Timothy Malche
Created November 23, 2023

AquaSight: Empowering Visually Impaired Swimmers

AquaSight, an innovative smart goggle designed to assist visually impaired swimmers.

80

Things used in this project

Hardware components

Nano 33 BLE Sense
Arduino Nano 33 BLE Sense
×1
OV7675 Camera Module
×1
Ultrasonic Sensor - HC-SR04 (Generic)
Ultrasonic Sensor - HC-SR04 (Generic)
×1
Buzzer
Buzzer
×1

Software apps and online services

Edge Impulse Studio
Edge Impulse Studio
Arduino IDE
Arduino IDE

Story

Read more

Schematics

Device Setup

Code

AquaSight Firmware

Arduino
#include <swimming-object_inferencing.h>
#include <Arduino_OV767X.h> //Click here to get the library: https://www.arduino.cc/reference/en/libraries/arduino_ov767x/

#include <stdint.h>
#include <stdlib.h>

/* Constant variables ------------------------------------------------------- */
#define EI_CAMERA_RAW_FRAME_BUFFER_COLS     160
#define EI_CAMERA_RAW_FRAME_BUFFER_ROWS     120

#define DWORD_ALIGN_PTR(a)   ((a & 0x3) ?(((uintptr_t)a + 0x4) & ~(uintptr_t)0x3) : a)


const int trigPin = 11;
const int echoPin = 12;

long duration;
int distance;

int buzzer = 7; // set the buzzer control digital IO pin 


/* Edge Impulse ------------------------------------------------------------- */
class OV7675 : public OV767X {
    public:
        int begin(int resolution, int format, int fps);
        void readFrame(void* buffer);

    private:
        int vsyncPin;
        int hrefPin;
        int pclkPin;
        int xclkPin;

        volatile uint32_t* vsyncPort;
        uint32_t vsyncMask;
        volatile uint32_t* hrefPort;
        uint32_t hrefMask;
        volatile uint32_t* pclkPort;
        uint32_t pclkMask;

        uint16_t width;
        uint16_t height;
        uint8_t bytes_per_pixel;
        uint16_t bytes_per_row;
        uint8_t buf_rows;
        uint16_t buf_size;
        uint8_t resize_height;
        uint8_t *raw_buf;
        void *buf_mem;
        uint8_t *intrp_buf;
        uint8_t *buf_limit;

        void readBuf();
        int allocate_scratch_buffs();
        int deallocate_scratch_buffs();
};

typedef struct {
	size_t width;
	size_t height;
} ei_device_resize_resolutions_t;

/**
 * @brief      Check if new serial data is available
 *
 * @return     Returns number of available bytes
 */
int ei_get_serial_available(void) {
    return Serial.available();
}

/**
 * @brief      Get next available byte
 *
 * @return     byte
 */
char ei_get_serial_byte(void) {
    return Serial.read();
}

/* Private variables ------------------------------------------------------- */
static OV7675 Cam;
static bool is_initialised = false;

/*
** @brief points to the output of the capture
*/
static uint8_t *ei_camera_capture_out = NULL;
uint32_t resize_col_sz;
uint32_t resize_row_sz;
bool do_resize = false;
bool do_crop = false;

static bool debug_nn = false; // Set this to true to see e.g. features generated from the raw signal

/* Function definitions ------------------------------------------------------- */
bool ei_camera_init(void);
void ei_camera_deinit(void);
bool ei_camera_capture(uint32_t img_width, uint32_t img_height, uint8_t *out_buf) ;
int calculate_resize_dimensions(uint32_t out_width, uint32_t out_height, uint32_t *resize_col_sz, uint32_t *resize_row_sz, bool *do_resize);
void resizeImage(int srcWidth, int srcHeight, uint8_t *srcImage, int dstWidth, int dstHeight, uint8_t *dstImage, int iBpp);
void cropImage(int srcWidth, int srcHeight, uint8_t *srcImage, int startX, int startY, int dstWidth, int dstHeight, uint8_t *dstImage, int iBpp);

/**
* @brief      Arduino setup function
*/
void setup()
{

    pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output
    pinMode(echoPin, INPUT); // Sets the echoPin as an Input
    pinMode(buzzer, OUTPUT); // set pin 7 as output
    // put your setup code here, to run once:
    Serial.begin(115200);
    // comment out the below line to cancel the wait for USB connection (needed for native USB)
    while (!Serial);
    Serial.println("Edge Impulse Inferencing Demo");

    // summary of inferencing settings (from model_metadata.h)
    ei_printf("Inferencing settings:\n");
    ei_printf("\tImage resolution: %dx%d\n", EI_CLASSIFIER_INPUT_WIDTH, EI_CLASSIFIER_INPUT_HEIGHT);
    ei_printf("\tFrame size: %d\n", EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE);
    ei_printf("\tNo. of classes: %d\n", sizeof(ei_classifier_inferencing_categories) / sizeof(ei_classifier_inferencing_categories[0]));
}

/**
* @brief      Get data and run inferencing
*
* @param[in]  debug  Get debug info if true
*/
void loop()
{

  
    bool stop_inferencing = false;

    while(stop_inferencing == false) {
        ei_printf("\nStarting inferencing in 2 seconds...\n");

        // instead of wait_ms, we'll wait on the signal, this allows threads to cancel us...
        if (ei_sleep(2000) != EI_IMPULSE_OK) {
            break;
        }

        ei_printf("Taking photo...\n");

        if (ei_camera_init() == false) {
            ei_printf("ERR: Failed to initialize image sensor\r\n");
            break;
        }

        // choose resize dimensions
        uint32_t resize_col_sz;
        uint32_t resize_row_sz;
        bool do_resize = false;
        int res = calculate_resize_dimensions(EI_CLASSIFIER_INPUT_WIDTH, EI_CLASSIFIER_INPUT_HEIGHT, &resize_col_sz, &resize_row_sz, &do_resize);
        if (res) {
            ei_printf("ERR: Failed to calculate resize dimensions (%d)\r\n", res);
            break;
        }

        void *snapshot_mem = NULL;
        uint8_t *snapshot_buf = NULL;
        snapshot_mem = ei_malloc(resize_col_sz*resize_row_sz*2);
        if(snapshot_mem == NULL) {
            ei_printf("failed to create snapshot_mem\r\n");
            break;
        }
        snapshot_buf = (uint8_t *)DWORD_ALIGN_PTR((uintptr_t)snapshot_mem);

        if (ei_camera_capture(EI_CLASSIFIER_INPUT_WIDTH, EI_CLASSIFIER_INPUT_HEIGHT, snapshot_buf) == false) {
            ei_printf("Failed to capture image\r\n");
            if (snapshot_mem) ei_free(snapshot_mem);
            break;
        }

        ei::signal_t signal;
        signal.total_length = EI_CLASSIFIER_INPUT_WIDTH * EI_CLASSIFIER_INPUT_HEIGHT;
        signal.get_data = &ei_camera_cutout_get_data;

        // run the impulse: DSP, neural network and the Anomaly algorithm
        ei_impulse_result_t result = { 0 };

        EI_IMPULSE_ERROR ei_error = run_classifier(&signal, &result, debug_nn);
        if (ei_error != EI_IMPULSE_OK) {
            ei_printf("Failed to run impulse (%d)\n", ei_error);
            ei_free(snapshot_mem);
            break;
        }

        // print the predictions
        ei_printf("Predictions (DSP: %d ms., Classification: %d ms., Anomaly: %d ms.): \n",
                  result.timing.dsp, result.timing.classification, result.timing.anomaly);
#if EI_CLASSIFIER_OBJECT_DETECTION == 1
        bool bb_found = result.bounding_boxes[0].value > 0;
        for (size_t ix = 0; ix < result.bounding_boxes_count; ix++) {
            auto bb = result.bounding_boxes[ix];
            if (bb.value == 0) {
                continue;
            }

            ei_printf("    %s (%f) [ x: %u, y: %u, width: %u, height: %u ]\n", bb.label, bb.value, bb.x, bb.y, bb.width, bb.height);
        }

        if (!bb_found) {
            ei_printf("    No objects found\n");
        }
#else
        for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
            ei_printf("    %s: %.5f\n", result.classification[ix].label,
                                        result.classification[ix].value);
                 if(EI_CLASSIFIER_LABEL_COUNT > 0){ // if any object is detected

                  /******************************************************/

                      digitalWrite(trigPin, LOW);
                      delayMicroseconds(2);
                      // Sets the trigPin on HIGH state for 10 micro seconds
                      digitalWrite(trigPin, HIGH);
                      delayMicroseconds(10);
                      digitalWrite(trigPin, LOW);
                      // Reads the echoPin, returns the sound wave travel time in microseconds
                      duration = pulseIn(echoPin, HIGH);
                      // Calculating the distance
                      distance = ( duration / 29 ) / 2;
                      // Prints the distance on the Serial Monitor
                      Serial.print("Distance: ");
                      Serial.println(distance);

                      if (distance < 200 ){  // Check is distance is less than 2 meter
                         digitalWrite(buzzer, HIGH); // Generate ALert!
                          Serial.println("beep");
                      }

                  /******************************************************/
                  
                 }
        }
#if EI_CLASSIFIER_HAS_ANOMALY == 1
        ei_printf("    anomaly score: %.3f\n", result.anomaly);
#endif
#endif

        while (ei_get_serial_available() > 0) {
            if (ei_get_serial_byte() == 'b') {
                ei_printf("Inferencing stopped by user\r\n");
                stop_inferencing = true;
            }
        }
        if (snapshot_mem) ei_free(snapshot_mem);
    }
    ei_camera_deinit();
}

/**
 * @brief      Determine whether to resize and to which dimension
 *
 * @param[in]  out_width     width of output image
 * @param[in]  out_height    height of output image
 * @param[out] resize_col_sz       pointer to frame buffer's column/width value
 * @param[out] resize_row_sz       pointer to frame buffer's rows/height value
 * @param[out] do_resize     returns whether to resize (or not)
 *
 */
int calculate_resize_dimensions(uint32_t out_width, uint32_t out_height, uint32_t *resize_col_sz, uint32_t *resize_row_sz, bool *do_resize)
{
    size_t list_size = 2;
    const ei_device_resize_resolutions_t list[list_size] = { {42,32}, {128,96} };

    // (default) conditions
    *resize_col_sz = EI_CAMERA_RAW_FRAME_BUFFER_COLS;
    *resize_row_sz = EI_CAMERA_RAW_FRAME_BUFFER_ROWS;
    *do_resize = false;

    for (size_t ix = 0; ix < list_size; ix++) {
        if ((out_width <= list[ix].width) && (out_height <= list[ix].height)) {
            *resize_col_sz = list[ix].width;
            *resize_row_sz = list[ix].height;
            *do_resize = true;
            break;
        }
    }

    return 0;
}

/**
 * @brief   Setup image sensor & start streaming
 *
 * @retval  false if initialisation failed
 */
bool ei_camera_init(void) {
    if (is_initialised) return true;
    
    if (!Cam.begin(QQVGA, RGB565, 1)) { // VGA downsampled to QQVGA (OV7675)
        ei_printf("ERR: Failed to initialize camera\r\n");
        return false;
    }
    is_initialised = true;

    return true;
}

/**
 * @brief      Stop streaming of sensor data
 */
void ei_camera_deinit(void) {
    if (is_initialised) {
        Cam.end();
        is_initialised = false;
    }
}

/**
 * @brief      Capture, rescale and crop image
 *
 * @param[in]  img_width     width of output image
 * @param[in]  img_height    height of output image
 * @param[in]  out_buf       pointer to store output image, NULL may be used
 *                           when full resolution is expected.
 *
 * @retval     false if not initialised, image captured, rescaled or cropped failed
 *
 */
bool ei_camera_capture(uint32_t img_width, uint32_t img_height, uint8_t *out_buf) 
{
    if (!is_initialised) {
        ei_printf("ERR: Camera is not initialized\r\n");
        return false;
    }

    if (!out_buf) {
        ei_printf("ERR: invalid parameters\r\n");
        return false;
    }

    // choose resize dimensions
    int res = calculate_resize_dimensions(img_width, img_height, &resize_col_sz, &resize_row_sz, &do_resize);
    if (res) {
        ei_printf("ERR: Failed to calculate resize dimensions (%d)\r\n", res);
        return false;
    }

    if ((img_width != resize_col_sz)
        || (img_height != resize_row_sz)) {
        do_crop = true;
    }

    Cam.readFrame(out_buf); // captures image and resizes

    if (do_crop) {
        uint32_t crop_col_sz;
        uint32_t crop_row_sz;
        uint32_t crop_col_start;
        uint32_t crop_row_start;
        crop_row_start = (resize_row_sz - img_height) / 2;
        crop_col_start = (resize_col_sz - img_width) / 2;
        crop_col_sz = img_width;
        crop_row_sz = img_height;

        //ei_printf("crop cols: %d, rows: %d\r\n", crop_col_sz,crop_row_sz);
        cropImage(resize_col_sz, resize_row_sz,
                out_buf,
                crop_col_start, crop_row_start,
                crop_col_sz, crop_row_sz,
                out_buf,
                16);
    }

    // The following variables should always be assigned
    // if this routine is to return true
    // cutout values
    //ei_camera_snapshot_is_resized = do_resize;
    //ei_camera_snapshot_is_cropped = do_crop;
    ei_camera_capture_out = out_buf;

    return true;
}

/**
 * @brief      Convert RGB565 raw camera buffer to RGB888
 *
 * @param[in]   offset       pixel offset of raw buffer
 * @param[in]   length       number of pixels to convert
 * @param[out]  out_buf      pointer to store output image
 */
int ei_camera_cutout_get_data(size_t offset, size_t length, float *out_ptr) {
    size_t pixel_ix = offset * 2; 
    size_t bytes_left = length;
    size_t out_ptr_ix = 0;

    // read byte for byte
    while (bytes_left != 0) {
        // grab the value and convert to r/g/b
        uint16_t pixel = (ei_camera_capture_out[pixel_ix] << 8) | ei_camera_capture_out[pixel_ix+1];
        uint8_t r, g, b;
        r = ((pixel >> 11) & 0x1f) << 3;
        g = ((pixel >> 5) & 0x3f) << 2;
        b = (pixel & 0x1f) << 3;

        // then convert to out_ptr format
        float pixel_f = (r << 16) + (g << 8) + b;
        out_ptr[out_ptr_ix] = pixel_f;

        // and go to the next pixel
        out_ptr_ix++;
        pixel_ix+=2;
        bytes_left--;
    }

    // and done!
    return 0;
}

// This include file works in the Arduino environment
// to define the Cortex-M intrinsics
#ifdef __ARM_FEATURE_SIMD32
#include <device.h>
#endif
// This needs to be < 16 or it won't fit. Cortex-M4 only has SIMD for signed multiplies
#define FRAC_BITS 14
#define FRAC_VAL (1<<FRAC_BITS)
#define FRAC_MASK (FRAC_VAL - 1)
//
// Resize
//
// Assumes that the destination buffer is dword-aligned
// Can be used to resize the image smaller or larger
// If resizing much smaller than 1/3 size, then a more rubust algorithm should average all of the pixels
// This algorithm uses bilinear interpolation - averages a 2x2 region to generate each new pixel
//
// Optimized for 32-bit MCUs
// supports 8 and 16-bit pixels
void resizeImage(int srcWidth, int srcHeight, uint8_t *srcImage, int dstWidth, int dstHeight, uint8_t *dstImage, int iBpp)
{
    uint32_t src_x_accum, src_y_accum; // accumulators and fractions for scaling the image
    uint32_t x_frac, nx_frac, y_frac, ny_frac;
    int x, y, ty, tx;

    if (iBpp != 8 && iBpp != 16)
        return;
    src_y_accum = FRAC_VAL/2; // start at 1/2 pixel in to account for integer downsampling which might miss pixels
    const uint32_t src_x_frac = (srcWidth * FRAC_VAL) / dstWidth;
    const uint32_t src_y_frac = (srcHeight * FRAC_VAL) / dstHeight;
    const uint32_t r_mask = 0xf800f800;
    const uint32_t g_mask = 0x07e007e0;
    const uint32_t b_mask = 0x001f001f;
    uint8_t *s, *d;
    uint16_t *s16, *d16;
    uint32_t x_frac2, y_frac2; // for 16-bit SIMD
    for (y=0; y < dstHeight; y++) {
        ty = src_y_accum >> FRAC_BITS; // src y
        y_frac = src_y_accum & FRAC_MASK;
        src_y_accum += src_y_frac;
        ny_frac = FRAC_VAL - y_frac; // y fraction and 1.0 - y fraction
        y_frac2 = ny_frac | (y_frac << 16); // for M4/M4 SIMD
        s = &srcImage[ty * srcWidth];
        s16 = (uint16_t *)&srcImage[ty * srcWidth * 2];
        d = &dstImage[y * dstWidth];
        d16 = (uint16_t *)&dstImage[y * dstWidth * 2];
        src_x_accum = FRAC_VAL/2; // start at 1/2 pixel in to account for integer downsampling which might miss pixels
        if (iBpp == 8) {
        for (x=0; x < dstWidth; x++) {
            uint32_t tx, p00,p01,p10,p11;
            tx = src_x_accum >> FRAC_BITS;
            x_frac = src_x_accum & FRAC_MASK;
            nx_frac = FRAC_VAL - x_frac; // x fraction and 1.0 - x fraction
            x_frac2 = nx_frac | (x_frac << 16);
            src_x_accum += src_x_frac;
            p00 = s[tx]; p10 = s[tx+1];
            p01 = s[tx+srcWidth]; p11 = s[tx+srcWidth+1];
    #ifdef __ARM_FEATURE_SIMD32
            p00 = __SMLAD(p00 | (p10<<16), x_frac2, FRAC_VAL/2) >> FRAC_BITS; // top line
            p01 = __SMLAD(p01 | (p11<<16), x_frac2, FRAC_VAL/2) >> FRAC_BITS; // bottom line
            p00 = __SMLAD(p00 | (p01<<16), y_frac2, FRAC_VAL/2) >> FRAC_BITS; // combine
    #else // generic C code
            p00 = ((p00 * nx_frac) + (p10 * x_frac) + FRAC_VAL/2) >> FRAC_BITS; // top line
            p01 = ((p01 * nx_frac) + (p11 * x_frac) + FRAC_VAL/2) >> FRAC_BITS; // bottom line
            p00 = ((p00 * ny_frac) + (p01 * y_frac) + FRAC_VAL/2) >> FRAC_BITS; // combine top + bottom
    #endif // Cortex-M4/M7
            *d++ = (uint8_t)p00; // store new pixel
        } // for x
        } // 8-bpp
        else
        { // RGB565
        for (x=0; x < dstWidth; x++) {
            uint32_t tx, p00,p01,p10,p11;
            uint32_t r00, r01, r10, r11, g00, g01, g10, g11, b00, b01, b10, b11;
            tx = src_x_accum >> FRAC_BITS;
            x_frac = src_x_accum & FRAC_MASK;
            nx_frac = FRAC_VAL - x_frac; // x fraction and 1.0 - x fraction
            x_frac2 = nx_frac | (x_frac << 16);
            src_x_accum += src_x_frac;
            p00 = __builtin_bswap16(s16[tx]); p10 = __builtin_bswap16(s16[tx+1]);
            p01 = __builtin_bswap16(s16[tx+srcWidth]); p11 = __builtin_bswap16(s16[tx+srcWidth+1]);
    #ifdef __ARM_FEATURE_SIMD32
            {
            p00 |= (p10 << 16);
            p01 |= (p11 << 16);
            r00 = (p00 & r_mask) >> 1; g00 = p00 & g_mask; b00 = p00 & b_mask;
            r01 = (p01 & r_mask) >> 1; g01 = p01 & g_mask; b01 = p01 & b_mask;
            r00 = __SMLAD(r00, x_frac2, FRAC_VAL/2) >> FRAC_BITS; // top line
            r01 = __SMLAD(r01, x_frac2, FRAC_VAL/2) >> FRAC_BITS; // bottom line
            r00 = __SMLAD(r00 | (r01<<16), y_frac2, FRAC_VAL/2) >> FRAC_BITS; // combine
            g00 = __SMLAD(g00, x_frac2, FRAC_VAL/2) >> FRAC_BITS; // top line
            g01 = __SMLAD(g01, x_frac2, FRAC_VAL/2) >> FRAC_BITS; // bottom line
            g00 = __SMLAD(g00 | (g01<<16), y_frac2, FRAC_VAL/2) >> FRAC_BITS; // combine
            b00 = __SMLAD(b00, x_frac2, FRAC_VAL/2) >> FRAC_BITS; // top line
            b01 = __SMLAD(b01, x_frac2, FRAC_VAL/2) >> FRAC_BITS; // bottom line
            b00 = __SMLAD(b00 | (b01<<16), y_frac2, FRAC_VAL/2) >> FRAC_BITS; // combine
            }
    #else // generic C code
            {
            r00 = (p00 & r_mask) >> 1; g00 = p00 & g_mask; b00 = p00 & b_mask;
            r10 = (p10 & r_mask) >> 1; g10 = p10 & g_mask; b10 = p10 & b_mask;
            r01 = (p01 & r_mask) >> 1; g01 = p01 & g_mask; b01 = p01 & b_mask;
            r11 = (p11 & r_mask) >> 1; g11 = p11 & g_mask; b11 = p11 & b_mask;
            r00 = ((r00 * nx_frac) + (r10 * x_frac) + FRAC_VAL/2) >> FRAC_BITS; // top line
            r01 = ((r01 * nx_frac) + (r11 * x_frac) + FRAC_VAL/2) >> FRAC_BITS; // bottom line
            r00 = ((r00 * ny_frac) + (r01 * y_frac) + FRAC_VAL/2) >> FRAC_BITS; // combine top + bottom
            g00 = ((g00 * nx_frac) + (g10 * x_frac) + FRAC_VAL/2) >> FRAC_BITS; // top line
            g01 = ((g01 * nx_frac) + (g11 * x_frac) + FRAC_VAL/2) >> FRAC_BITS; // bottom line
            g00 = ((g00 * ny_frac) + (g01 * y_frac) + FRAC_VAL/2) >> FRAC_BITS; // combine top + bottom
            b00 = ((b00 * nx_frac) + (b10 * x_frac) + FRAC_VAL/2) >> FRAC_BITS; // top line
            b01 = ((b01 * nx_frac) + (b11 * x_frac) + FRAC_VAL/2) >> FRAC_BITS; // bottom line
            b00 = ((b00 * ny_frac) + (b01 * y_frac) + FRAC_VAL/2) >> FRAC_BITS; // combine top + bottom
            }
    #endif // Cortex-M4/M7
            r00 = (r00 << 1) & r_mask;
            g00 = g00 & g_mask;
            b00 = b00 & b_mask;
            p00 = (r00 | g00 | b00); // re-combine color components
            *d16++ = (uint16_t)__builtin_bswap16(p00); // store new pixel
        } // for x
        } // 16-bpp
    } // for y
} /* resizeImage() */
//
// Crop
//
// Assumes that the destination buffer is dword-aligned
// optimized for 32-bit MCUs
// Supports 8 and 16-bit pixels
//
void cropImage(int srcWidth, int srcHeight, uint8_t *srcImage, int startX, int startY, int dstWidth, int dstHeight, uint8_t *dstImage, int iBpp)
{
    uint32_t *s32, *d32;
    int x, y;

    if (startX < 0 || startX >= srcWidth || startY < 0 || startY >= srcHeight || (startX + dstWidth) > srcWidth || (startY + dstHeight) > srcHeight)
       return; // invalid parameters
    if (iBpp != 8 && iBpp != 16)
       return;

    if (iBpp == 8) {
      uint8_t *s, *d;
      for (y=0; y<dstHeight; y++) {
        s = &srcImage[srcWidth * (y + startY) + startX];
        d = &dstImage[(dstWidth * y)];
        x = 0;
        if ((intptr_t)s & 3 || (intptr_t)d & 3) { // either src or dst pointer is not aligned
          for (; x<dstWidth; x++) {
            *d++ = *s++; // have to do it byte-by-byte
          }
        } else {
          // move 4 bytes at a time if aligned or alignment not enforced
          s32 = (uint32_t *)s;
          d32 = (uint32_t *)d;
          for (; x<dstWidth-3; x+= 4) {
            *d32++ = *s32++;
          }
          // any remaining stragglers?
          s = (uint8_t *)s32;
          d = (uint8_t *)d32;
          for (; x<dstWidth; x++) {
            *d++ = *s++;
          }
        }
      } // for y
    } // 8-bpp
    else
    {
      uint16_t *s, *d;
      for (y=0; y<dstHeight; y++) {
        s = (uint16_t *)&srcImage[2 * srcWidth * (y + startY) + startX * 2];
        d = (uint16_t *)&dstImage[(dstWidth * y * 2)];
        x = 0;
        if ((intptr_t)s & 2 || (intptr_t)d & 2) { // either src or dst pointer is not aligned
          for (; x<dstWidth; x++) {
            *d++ = *s++; // have to do it 16-bits at a time
          }
        } else {
          // move 4 bytes at a time if aligned or alignment no enforced
          s32 = (uint32_t *)s;
          d32 = (uint32_t *)d;
          for (; x<dstWidth-1; x+= 2) { // we can move 2 pixels at a time
            *d32++ = *s32++;
          }
          // any remaining stragglers?
          s = (uint16_t *)s32;
          d = (uint16_t *)d32;
          for (; x<dstWidth; x++) {
            *d++ = *s++;
          }
        }
      } // for y
    } // 16-bpp case
} /* cropImage() */

#if !defined(EI_CLASSIFIER_SENSOR) || EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_CAMERA
#error "Invalid model for current sensor"
#endif

// OV767X camera library override
#include <Arduino.h>
#include <Wire.h>

#define digitalPinToBitMask(P) (1 << (digitalPinToPinName(P) % 32))
#define portInputRegister(P) ((P == 0) ? &NRF_P0->IN : &NRF_P1->IN)

//
// OV7675::begin()
//
// Extends the OV767X library function. Some private variables are needed
// to use the OV7675::readFrame function.
//
int OV7675::begin(int resolution, int format, int fps)
{
    pinMode(OV7670_VSYNC, INPUT);
    pinMode(OV7670_HREF, INPUT);
    pinMode(OV7670_PLK, INPUT);
    pinMode(OV7670_XCLK, OUTPUT);

    vsyncPort = portInputRegister(digitalPinToPort(OV7670_VSYNC));
    vsyncMask = digitalPinToBitMask(OV7670_VSYNC);
    hrefPort = portInputRegister(digitalPinToPort(OV7670_HREF));
    hrefMask = digitalPinToBitMask(OV7670_HREF);
    pclkPort = portInputRegister(digitalPinToPort(OV7670_PLK));
    pclkMask = digitalPinToBitMask(OV7670_PLK);

    // init driver to use full image sensor size
    bool ret = OV767X::begin(VGA, format, fps);
    width = OV767X::width(); // full sensor width
    height = OV767X::height(); // full sensor height
    bytes_per_pixel = OV767X::bytesPerPixel();
    bytes_per_row = width * bytes_per_pixel; // each pixel is 2 bytes
    resize_height = 2;

    buf_mem = NULL;
    raw_buf = NULL;
    intrp_buf = NULL;
    //allocate_scratch_buffs();

    return ret;
} /* OV7675::begin() */

int OV7675::allocate_scratch_buffs()
{
    //ei_printf("allocating buffers..\r\n");
    buf_rows = height / resize_row_sz * resize_height;
    buf_size = bytes_per_row * buf_rows;

    buf_mem = ei_malloc(buf_size);
    if(buf_mem == NULL) {
        ei_printf("failed to create buf_mem\r\n");
        return false;
    }
    raw_buf = (uint8_t *)DWORD_ALIGN_PTR((uintptr_t)buf_mem);

    //ei_printf("allocating buffers OK\r\n");
    return 0;
}

int OV7675::deallocate_scratch_buffs()
{
    //ei_printf("deallocating buffers...\r\n");
    ei_free(buf_mem);
    buf_mem = NULL;
    
    //ei_printf("deallocating buffers OK\r\n");
    return 0;
}

//
// OV7675::readFrame()
//
// Overrides the OV767X library function. Fixes the camera output to be
// a far more desirable image. This image utilizes the full sensor size
// and has the correct aspect ratio. Since there is limited memory on the
// Nano we bring in only part of the entire sensor at a time and then
// interpolate to a lower resolution.
//
void OV7675::readFrame(void* buffer)
{
    allocate_scratch_buffs();

    uint8_t* out = (uint8_t*)buffer;
    noInterrupts();

    // Falling edge indicates start of frame
    while ((*vsyncPort & vsyncMask) == 0); // wait for HIGH
    while ((*vsyncPort & vsyncMask) != 0); // wait for LOW

    int out_row = 0;
    for (int raw_height = 0; raw_height < height; raw_height += buf_rows) {
        // read in 640xbuf_rows buffer to work with
        readBuf();

        resizeImage(width, buf_rows,
                    raw_buf,
                    resize_col_sz, resize_height,
                    &(out[out_row]),
                    16);
        
        out_row += resize_col_sz * resize_height * bytes_per_pixel; /* resize_col_sz * 2 * 2 */
    }

    interrupts();

    deallocate_scratch_buffs();
} /* OV7675::readFrame() */

//
// OV7675::readBuf()
//
// Extends the OV767X library function. Reads buf_rows VGA rows from the
// image sensor.
//
void OV7675::readBuf()
{
    int offset = 0;

    uint32_t ulPin = 33; // P1.xx set of GPIO is in 'pin' 32 and above
    NRF_GPIO_Type * port;

    port = nrf_gpio_pin_port_decode(&ulPin);

    for (int i = 0; i < buf_rows; i++) {
        // rising edge indicates start of line
        while ((*hrefPort & hrefMask) == 0); // wait for HIGH

        for (int col = 0; col < bytes_per_row; col++) {
            // rising edges clock each data byte
            while ((*pclkPort & pclkMask) != 0); // wait for LOW

            uint32_t in = port->IN; // read all bits in parallel

            in >>= 2; // place bits 0 and 1 at the "bottom" of the register
            in &= 0x3f03; // isolate the 8 bits we care about
            in |= (in >> 6); // combine the upper 6 and lower 2 bits

            raw_buf[offset++] = in;

            while ((*pclkPort & pclkMask) == 0); // wait for HIGH
        }

        while ((*hrefPort & hrefMask) != 0); // wait for LOW
    }
} /* OV7675::readBuf() */

Credits

Timothy Malche

Timothy Malche

17 projects • 22 followers
Maker, Educator, Researcher

Comments