Baxter SmithJulia SolanoCorey ShortStanford Stickney
Published

Hertzian Armor

Hertzian Armor is a shoulder armor made to visually illustrate the ubiquity of WiFi; a resouce that we constantly use but never see.

IntermediateFull instructions provided11,252
Hertzian Armor

Things used in this project

Hardware components

Neoprene
Our original intention was to use leather to build this, but we opted for Neoprene because of it's interesting texture and flexibility.
×1
Arduino LilyPad Main Board
Arduino LilyPad Main Board
We used a LilyPad Arduino 328 Main Board for this project. We wanted to use an Arduino that we could sew into the material, but this proved to be arduous. We also chose the main board over the LilyPad Simple Board as it has more pins.
×1
LilyPad FTDI Basic Breakout - 5V
The main board needs this to load and compile Arduino code on it.
×1
Adafruit HUZZAH CC3000 WiFi Breakout with Onboard Antenna - v1.1
Adafruit HUZZAH CC3000 WiFi Breakout with Onboard Antenna - v1.1
The pins are connected to the LilyPad as suggested on the Adafruit instructable. It is suggested to use at least a 1 amp external power supply to power this properly.
×1
Adafruit NeoPixel Digital RGB LED Strip - White 30 LED - 1m - WHITE
We cut and removed the white housing from around the LED strip. We used Velcro to attach and to secure the lights to the neoprene.
×1
LilyPad LiPower
This converts our 3.7 volts received from the battery to 5 volts to power everything! Yea!
×1
Polymer Lithium Ion Battery - 2000mAh
We were concerned with powering the LilyPad, CC3000, and NeoPixels so we opted for the 2 amp battery. This thing worked great!
×1
1000uF 10V Capacitor
This capacitor helps smooth out the voltage across the NeoPixel strip. It is the recommended capacity as Adafruit states on their NeoPixel instructable.
×1
330 ohm resitor
This resistor aids in preventing spikes that could damage the NeoPixel strip. It is hooked up to the strip's digital input.
×1
Velcro
Velcro works great to secure things in a pinch.
×1
Alligator Test Leads - Multicolored (10 Pack)
For quick testing and prototyping on the Lilypad.
×1

Story

Read more

Custom parts and enclosures

hertzian_armor_model.stl

3D hertzian armor .stl file

Code

wearables.ino

Plain text
Arduino code. We scan for local WiFi, take the average RSSI to determine the number of pixels to light, and we map RGB values to the WPA2, Unsecured, and WPA security protocols, respectively.
/*************************************************************************************** 
  Arduino code for Provocation 3: Hertzian Armor -
  Critical Making Spring 2015

  Designed specifically to work with the following Adafruit products:
  ----> https://www.adafruit.com/products/1469
  ----> https://www.adafruit.com/products/1376

  Modified code sample implemented by Kevin Townsend & Limor Fried for Adafruit Industries.  
  BSD license, all text above must be included in any redistribution
  
  Author: Corey Short
  Date: 05/05/2015
 ***************************************************************************************/

#include <Adafruit_CC3000.h>
#include <Adafruit_NeoPixel.h>
#include <avr/power.h>
#include <ccspi.h>
#include <SPI.h>
#include <string.h>
#include "utility/debug.h"

#define NUM_PIXELS 21             // The number of NeoPixels in our strip

/* These are the interrupt and control pins */
#define ADAFRUIT_CC3000_IRQ   3  // MUST be an interrupt pin!
#define STRIP_PIN             6  // NeoPixel strip pin
#define ADAFRUIT_CC3000_VBAT  5  // VBAT can be any digital pin
#define ADAFRUIT_CC3000_CS    10 // CS can be any pin

int *lightShowData = 0;          // Pointer to WiFi scan results. Used to map RGB values to NeoPixel colors

/* Use hardware SPI for the remaining pins
 * On an UNO, SCK pin = 13, MISO pin = 12, and MOSI pin = 11
 */
Adafruit_CC3000 cc3000 = Adafruit_CC3000(ADAFRUIT_CC3000_CS, ADAFRUIT_CC3000_IRQ, ADAFRUIT_CC3000_VBAT,
                                         SPI_CLOCK_DIVIDER); // you can change this clock speed but DI
                                         
// Parameter 1 = number of pixels in strip
// Parameter 2 = Arduino pin number (most are valid)
// Parameter 3 = pixel type flags, add together as needed:
//   NEO_KHZ800  800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
//   NEO_KHZ400  400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
//   NEO_GRB     Pixels are wired for GRB bitstream (most NeoPixel products)
//   NEO_RGB     Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
Adafruit_NeoPixel strip = Adafruit_NeoPixel(NUM_PIXELS, STRIP_PIN, NEO_GRB + NEO_KHZ800);

// IMPORTANT: To reduce NeoPixel burnout risk, add 1000 uF capacitor across
// pixel power leads, add 300 - 500 Ohm resistor on first pixel's data input
// and minimize distance between Arduino and first pixel.  Avoid connecting
// on a live circuit...if you must, connect GND first.

/* Our setup code:
 * Initialization   - Initialize our CC3000 WiFi Breakout
 * SSID Scan        - We compute a scan for WiFi connections around us
 * Compute Averages - Compute RSSI, and Security type averages
 * Disconnect       - Disconnect CC3000
 * Initialization   - Initialize NeoPixel strip
 */
void setup(void) {
  
  initCC3000();                  // Initialize CC3000
  lightShowData = scanWiFi();    // & computeAverages. uint16_t list = scanWiFi() ?
  disconnectCC3000();            // Clean up after yourself and disconnect the CC3000
                                 // It would be nice to power down the CC3000 between scans

}

/* Our loop code:
 * startLightShow   - Start our NeoPixel light show. Repeat until delay over.
 * delay            - This will continue for 5 minutes before doing another WiFi scan.
 */
void loop(void) {
  
  initNeoPixelStrip();           // Initialize NeoPixel strip
  
  startLightShow(lightShowData);
  delay(30000);
  setup();
}

/* Light up our NeoPixel strip based on scanWiFi() results */
void startLightShow(int *p) {
  
  Serial.print(F("P        : "));
  Serial.println(p[0]);
  Serial.println(p[1]);
  Serial.println(p[2]);
  Serial.println(p[3]);
  
  
  uint32_t red = 255 * (p[1] / 100.0);
  uint32_t green = 255 * (p[2] / 100.0);
  uint32_t blue = 255 * (p[3] / 100.0);
  
  Serial.print(F("Colors        : "));
  Serial.println(red);
  Serial.println(green);
  Serial.println(blue);
 
  if (p[0] > 60) {
    colorWipe(strip.Color(red, green, blue), 100);
  }
  else if (p[0] >= 50 && p[0] <= 60) {
    colorWipe2(strip.Color(red, green, blue), 100);
  }
  else {
    colorWipe3(strip.Color(red, green, blue), 100); 
  }
}

// Fill the dots one after the other with a color
void colorWipe(uint32_t c, uint8_t wait) {
  uint16_t length = strip.numPixels();
  for (uint16_t i=length-1; i > 0; i--) {
      strip.setPixelColor(i, c);
      strip.show();
      delay(wait);
  }
}

// Fill the dots one after the other with a color
void colorWipe2(uint32_t c, uint8_t wait) {   
  uint16_t length = strip.numPixels();
  for (uint16_t i=length-1; i >= length-14; i--) {
      strip.setPixelColor(i, c);
      strip.show();
      delay(wait);
  }
}

// Fill the dots one after the other with a color
void colorWipe3(uint32_t c, uint8_t wait) {   
  uint16_t length = strip.numPixels();
  for(uint16_t i=length-1; i >= length-7; i--) {
      strip.setPixelColor(i, c);
      strip.show();
      delay(wait);
  }
}

/* Get the SSID list. We use this to compute the average WiFi strength around us. */
int * scanWiFi() {
#ifndef CC3000_TINY_DRIVER
  int *result = listSSIDResults();
#endif
  return result;
}  

/* Initialize CC3000 WiFi Breakout */
void initCC3000() {
  Serial.begin(115200);
  Serial.println(F("Hello, CC3000!\n"));
  /* Display the driver */
  displayDriverMode();
  Serial.print("Free RAM: "); Serial.println(getFreeRam(), DEC);
  /* Initialise the CC3000 module */
  Serial.println(F("\nInitialising the CC3000 ..."));
  if (!cc3000.begin()) {
    Serial.println(F("Unable to initialise the CC3000! Check your wiring?"));
    while(1);
  }
  /* Check firmware */
  uint16_t firmware = checkFirmwareVersion();
  if (firmware < 0x113) {
    Serial.println(F("Wrong firmware version!"));
    for(;;);
  }
  /* display MAC Address */
  displayMACAddress();
}

/* Disconnect CC3000 WiFi Breakout */
void disconnectCC3000() {
  Serial.println(F("\n\nClosing the connection"));
  cc3000.disconnect();
}

/* Initialize Adafruit NeoPixel strip */
void initNeoPixelStrip() {
  strip.begin();
//  strip.show(); // Initialize all pixels to 'off'
}  
  
/*! @brief  Displays the driver mode (tiny of normal), and the buffer size if tiny mode is not being used
    @note   The buffer size and driver mode are defined in cc3000_common.h */
void displayDriverMode(void) {
  Serial.print(F("RX Buffer : "));
  Serial.print(CC3000_RX_BUFFER_SIZE);
  Serial.println(F(" bytes"));
  Serial.print(F("TX Buffer : "));
  Serial.print(CC3000_TX_BUFFER_SIZE);
  Serial.println(F(" bytes"));
}

/*! @brief  Tries to read the CC3000's internal firmware patch ID */
uint16_t checkFirmwareVersion(void) {
  uint8_t major, minor;
  uint16_t version;
  
#ifndef CC3000_TINY_DRIVER  
  if(!cc3000.getFirmwareVersion(&major, &minor)) {
    Serial.println(F("Unable to retrieve the firmware version!\r\n"));
    version = 0;
  }
  else {
    Serial.print(F("Firmware V. : "));
    Serial.print(major); Serial.print(F(".")); Serial.println(minor);
    version = major; version <<= 8; version |= minor;
  }
#endif
  return version;
}

/*! @brief  Tries to read the 6-byte MAC address of the CC3000 module */
void displayMACAddress(void) {
  uint8_t macAddress[6];
  
  if(!cc3000.getMacAddress(macAddress)) {
    Serial.println(F("Unable to retrieve MAC Address!\r\n"));
  }
  else {
    Serial.print(F("MAC Address : "));
    cc3000.printHex((byte*)&macAddress, 6);
  }
}

/*! @brief  Begins an SSID scan and prints out all the visible networks */
int * listSSIDResults() {
  uint32_t index = 0;
  uint8_t valid = 0;
  uint8_t rssi = 0;
  uint8_t sec = 0;
  char ssidname[33];
  uint16_t rssiTotal = 0;
  int unsecTotal = 0;
  int secWPATotal = 0;
  int secWPA2Total = 0;
  int rssiAvg = 0;
  static int result[100];
  int numNetworks = 0;

  if (!cc3000.startSSIDscan(&index)) {
    Serial.println(F("SSID scan failed!"));
    return false;
  }

  Serial.print(F("Networks found: ")); Serial.println(index);
  Serial.println(F("================================================"));
  
  numNetworks = (int) index;
  while (index) {
    index--;

    valid = cc3000.getNextSSID(&rssi, &sec, ssidname);
    
    Serial.print(F("SSID Name    : ")); Serial.print(ssidname);
    Serial.println();
    Serial.print(F("RSSI         : "));
    Serial.println(rssi);
    Serial.print(F("Security Mode: "));
    Serial.println(sec);
    Serial.println();
    
    rssiTotal += rssi;
    if (sec == 3) {
      secWPA2Total += 1;
    }
    if (sec == 2 || sec == 1) {
      secWPATotal += 1;
    }
    if (sec == 0) {
      unsecTotal += 1;
    }
  }
  Serial.println(F("================================================"));
  Serial.print(F("RSSI Total        : "));
  Serial.println(rssiTotal);  
  Serial.print(F("Security Mode WP2A: "));
  Serial.println(secWPA2Total);
  Serial.print(F("Security Mode WPA : "));
  Serial.println(secWPATotal);
  Serial.print(F("Unsecured Mode    : "));
  Serial.println(unsecTotal);
  Serial.println();
  
  Serial.print(F("(int) RSSI total    : "));
  Serial.println((int) rssiTotal);
  Serial.print(F("(int) index    : "));
  Serial.println((int) index);
  
  rssiAvg = ((int) rssiTotal) / numNetworks;
  Serial.print(F("RSSI Avg    : "));
  Serial.println(rssiAvg);
  
  int red = ((float) secWPA2Total / (float) numNetworks) * 100;
  int green = ((float) unsecTotal / (float) numNetworks) * 100;
  int blue = ((float) secWPATotal / (float) numNetworks) * 100;

  result[0] = rssiAvg;
  result[1] = red;
  result[2] = green;
  result[3] = blue;
  
  cc3000.stopSSIDscan();

  Serial.print(F("Result        : "));
  Serial.println(result[0]);
  Serial.println(result[1]);
  Serial.println(result[2]);
  Serial.println(result[3]);
  
  return result;
}

Credits

Baxter Smith

Baxter Smith

9 projects • 7 followers
Architecture Masters student in second of three year program, I enjoy working with physical models and would like to work more with arduino based models
Julia Solano

Julia Solano

3 projects • 12 followers
Designer based in Berkeley, California.
Corey Short

Corey Short

10 projects • 8 followers
Stanford Stickney

Stanford Stickney

5 projects • 5 followers
I am a fun loving hardworking kid who enjoys life

Comments