Daniel DomingoMatt OsborneTyler Crowder
Published © GPL3+

Motion Sensors, Temperature, and Webhooks... OH MY!

Whatever the day holds for you, always make sure that you are above the weather instead of under it.

IntermediateFull instructions provided6 hours1,592
Motion Sensors, Temperature, and Webhooks... OH MY!

Things used in this project

Hardware components

Photon
Particle Photon
×3
Temperature Sensor
Temperature Sensor
×1
Adafruit Serial OLED Screen, 0.96''
×1
Buzzer
Buzzer
×1
Resistor 100 ohm
Resistor 100 ohm
×16
Resistor 4.75k ohm
Resistor 4.75k ohm
×1
PIR Motion Sensor (generic)
PIR Motion Sensor (generic)
×1
Jumper wires (generic)
Jumper wires (generic)
×47
RGB Diffused Common Anode
RGB Diffused Common Anode
×1
USB-A to Micro-USB Cable
USB-A to Micro-USB Cable
×3
SparkFun 7-Segment LED(Red)
×2

Software apps and online services

ThingSpeak API
ThingSpeak API
Mobicle
ControlEverything.com Mobicle
Particle IO
Google Sheets
Google Sheets

Hand tools and fabrication machines

Wire Cutters/Strippers

Story

Read more

Schematics

Schematic Drawing: Photon 1

Schematic Drawing: Photon 2

Schematic Drawing: Photon 3

Code

Photon 1

C/C++
Controls the LED screen, and gets outside weather information
#include "Adafruit_SSD1306/Adafruit_SSD1306.h"

#define OLED_DC     D3
#define OLED_CS     D4
#define OLED_RESET  D5

char temp[9];
char tempOutside[4];
String tempO;

Adafruit_SSD1306 display(OLED_DC, OLED_RESET, OLED_CS);

Timer timer(300000,getMyWeather);

void setup()  
{
   
    Particle.subscribe("temperature", myHandler, MY_DEVICES);
    Particle.subscribe("hook-response/get_my_weather", myWeatherHandler, MY_DEVICES);
    
    getMyWeather();
    display.begin(SSD1306_SWITCHCAPVCC);
    display.clearDisplay();
    display.display();

    timer.start();
    
}


void loop() 
{
   
    display.clearDisplay();
    display.setTextColor(WHITE);
    display.setTextSize(1);
    display.setCursor(0,0); 
    Time.zone(-4);
    display.print(Time.timeStr().c_str());
    display.setCursor(0,20); 
    display.printf("Inside Temp:  %0.4s F", temp);
    display.setCursor(0,35);
    display.printf("Outside Temp: %0.4s F", tempOutside);
    display.display();
    delay(500);
    
}


void getMyWeather()
{
    
    String data = String(10);
    // Trigger the integration
    Particle.publish("get_my_weather", data, PRIVATE); 
   
}


void myHandler(const char *event, const char *data)
{

    strcpy(temp,data);

}


void myWeatherHandler(const char *event, const char *data) 
{

    strcpy(tempOutside,data);
    tempO = String(data); 
    
}

Photon 2

C/C++
Controls PID, Dallas temperature sensor, and RGB LED.
#include "OneWire/OneWire.h"

#define NOTE_B0  31
#define NOTE_C1  33
#define NOTE_CS1 35
#define NOTE_D1  37
#define NOTE_DS1 39
#define NOTE_E1  41
#define NOTE_F1  44
#define NOTE_FS1 46
#define NOTE_G1  49
#define NOTE_GS1 52
#define NOTE_A1  55
#define NOTE_AS1 58
#define NOTE_B1  62
#define NOTE_C2  65
#define NOTE_CS2 69
#define NOTE_D2  73
#define NOTE_DS2 78
#define NOTE_E2  82
#define NOTE_F2  87
#define NOTE_FS2 93
#define NOTE_G2  98
#define NOTE_GS2 104
#define NOTE_A2  110
#define NOTE_AS2 117
#define NOTE_B2  123
#define NOTE_C3  131
#define NOTE_CS3 139
#define NOTE_D3  147
#define NOTE_DS3 156
#define NOTE_E3  165
#define NOTE_F3  175
#define NOTE_FS3 185
#define NOTE_G3  196
#define NOTE_GS3 208
#define NOTE_A3  220
#define NOTE_AS3 233
#define NOTE_B3  247
#define NOTE_C4  262
#define NOTE_CS4 277
#define NOTE_D4  294
#define NOTE_DS4 311
#define NOTE_E4  330
#define NOTE_F4  349
#define NOTE_FS4 370
#define NOTE_G4  392
#define NOTE_GS4 415
#define NOTE_A4  440
#define NOTE_AS4 466
#define NOTE_B4  494
#define NOTE_C5  523
#define NOTE_CS5 554
#define NOTE_D5  587
#define NOTE_DS5 622
#define NOTE_E5  659
#define NOTE_F5  698
#define NOTE_FS5 740
#define NOTE_G5  784
#define NOTE_GS5 831
#define NOTE_A5  880
#define NOTE_AS5 932
#define NOTE_B5  988
#define NOTE_C6  1047
#define NOTE_CS6 1109
#define NOTE_D6  1175
#define NOTE_DS6 1245
#define NOTE_E6  1319
#define NOTE_F6  1397
#define NOTE_FS6 1480
#define NOTE_G6  1568
#define NOTE_GS6 1661
#define NOTE_A6  1760
#define NOTE_AS6 1865
#define NOTE_B6  1976
#define NOTE_C7  2093
#define NOTE_CS7 2217
#define NOTE_D7  2349
#define NOTE_DS7 2489
#define NOTE_E7  2637
#define NOTE_F7  2794
#define NOTE_FS7 2960
#define NOTE_G7  3136
#define NOTE_GS7 3322
#define NOTE_A7  3520
#define NOTE_AS7 3729
#define NOTE_B7  3951
#define NOTE_C8  4186
#define NOTE_CS8 4435
#define NOTE_D8  4699
#define NOTE_DS8 4978


int melody[] = {
  NOTE_E7, NOTE_E7, 0, NOTE_E7,
  0, NOTE_C7, NOTE_E7, 0,
  NOTE_G7, 0, 0,  0,
  NOTE_G6, 0, 0, 0,
 
  NOTE_C7, 0, 0, NOTE_G6,
  0, 0, NOTE_E6, 0,
  0, NOTE_A6, 0, NOTE_B6,
  0, NOTE_AS6, NOTE_A6, 0,
 
  NOTE_G6, NOTE_E7, NOTE_G7,
  NOTE_A7, 0, NOTE_F7, NOTE_G7,
  0, NOTE_E7, 0, NOTE_C7,
  NOTE_D7, NOTE_B6, 0, 0,
 
  NOTE_C7, 0, 0, NOTE_G6,
  0, 0, NOTE_E6, 0,
  0, NOTE_A6, 0, NOTE_B6,
  0, NOTE_AS6, NOTE_A6, 0,
 
  NOTE_G6, NOTE_E7, NOTE_G7,
  NOTE_A7, 0, NOTE_F7, NOTE_G7,
  0, NOTE_E7, 0, NOTE_C7,
  NOTE_D7, NOTE_B6, 0, 0
};

int tempo[] = {
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
 
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
 
  9, 9, 9,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
 
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
 
  9, 9, 9,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
};

int underworld_melody[] = {
  NOTE_C4, NOTE_C5, NOTE_A3, NOTE_A4,
  NOTE_AS3, NOTE_AS4, 0,
  0,
  NOTE_C4, NOTE_C5, NOTE_A3, NOTE_A4,
  NOTE_AS3, NOTE_AS4, 0,
  0,
  NOTE_F3, NOTE_F4, NOTE_D3, NOTE_D4,
  NOTE_DS3, NOTE_DS4, 0,
  0,
  NOTE_F3, NOTE_F4, NOTE_D3, NOTE_D4,
  NOTE_DS3, NOTE_DS4, 0,
  0, NOTE_DS4, NOTE_CS4, NOTE_D4,
  NOTE_CS4, NOTE_DS4,
  NOTE_DS4, NOTE_GS3,
  NOTE_G3, NOTE_CS4,
  NOTE_C4, NOTE_FS4, NOTE_F4, NOTE_E3, NOTE_AS4, NOTE_A4,
  NOTE_GS4, NOTE_DS4, NOTE_B3,
  NOTE_AS3, NOTE_A3, NOTE_GS3,
  0, 0, 0
};

int underworld_tempo[] = {
  12, 12, 12, 12,
  12, 12, 6,
  3,
  12, 12, 12, 12,
  12, 12, 6,
  3,
  12, 12, 12, 12,
  12, 12, 6,
  3,
  12, 12, 12, 12,
  12, 12, 6,
  6, 18, 18, 18,
  6, 6,
  6, 6,
  6, 6,
  18, 18, 18, 18, 18, 18,
  10, 10, 10,
  10, 10, 10,
  3, 3, 3
};

OneWire ds = OneWire(D4); 
unsigned long lastUpdate = 0;
float lastTemp;
int speakerPin  = A4;
int inputPin = D6;               // choose the PIR sensor pin
bool available;                  // status of conference room
int motionCounter = 0;           // variable to count motion events
int redPin = D2;
int greenPin = D0;
int bluePin = D1;
String mCount = String("0");
int E = 1;
Timer d(300000, determineMotion);
Timer tr(30000, temp);

int whileCondition =0;

void setup() 
{
   
    Serial.begin(9600);

    pinMode(D3, OUTPUT);
    pinMode(D5, OUTPUT);
    digitalWrite(D3, LOW);
    digitalWrite(D5, HIGH);
    Spark.function("Melody", songToggle);
    Spark.function("Room Lock", lToggle);
   
    pinMode(inputPin, INPUT);     
    
    pinMode(redPin, OUTPUT);    
    pinMode(bluePin, OUTPUT);
    pinMode(greenPin,OUTPUT);
    analogWrite(redPin,255);
    analogWrite(greenPin,255);
    analogWrite(bluePin,255);  
    Particle.publish("mCount", "0");
    temp();
    d.start(); 
    tr.start();
    
}



void loop() 
{
  
    if (E == 1)
    {
        if (digitalRead(inputPin) == HIGH)
        {  
     
            analogWrite(redPin,125);
            analogWrite(greenPin,255);
            analogWrite(bluePin,3); 
            delay(2000);
            analogWrite(redPin,255);
            analogWrite(greenPin,255);
            analogWrite(bluePin,255); 
        
            motionCounter++;  
            mCount = String(motionCounter);
            Particle.publish("mCount", mCount, PRIVATE);
            
        } 
    }
    
    if(mCount.toInt() ==10)
    {
        
        alertSignal();
        
    }
    
    delay(500);     
}

void alertSignal()
{
    
    if(whileCondition ==0)
    {
        for (int thisNote = 0; thisNote < 57; thisNote++) 
        {

             // to calculate the note duration, take one second
            // divided by the note type.
            //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
            int underworld_tempos = 1000/underworld_tempo[thisNote];
            tone(speakerPin, underworld_melody[thisNote],underworld_tempos);

            // to distinguish the notes, set a minimum time between them.
            // the note's duration + 30% seems to work well:
            int pauseBetweenNotes = underworld_tempos * 1.30;
            delay(pauseBetweenNotes);
            // stop the tone playing:
            noTone(speakerPin);
            
        }

    whileCondition++;
    
    }
} 
 
 
 
void temp(void)
{
   // digitalWrite(D7,!digitalRead(D7));  //toggle led 
    
  byte i;
  byte present = 0;
  byte type_s;
  byte data[12];
  byte addr[8];
  float celsius, fahrenheit;

  if ( !ds.search(addr)) {
    Serial.println("No more addresses.");
    Serial.println();
    ds.reset_search();
    delay(250);
    return;
  }

  // The order is changed a bit in this example
  // first the returned address is printed

  Serial.print("ROM =");
  for( i = 0; i < 8; i++) {
    Serial.write(' ');
    Serial.print(addr[i], HEX);
  }

  // second the CRC is checked, on fail,
  // print error and just return to try again

  if (OneWire::crc8(addr, 7) != addr[7]) {
      Serial.println("CRC is not valid!");
      return;
  }
  Serial.println();

  // we have a good address at this point
  // what kind of chip do we have?
  // we will set a type_s value for known types or just return

  // the first ROM byte indicates which chip
  switch (addr[0]) {
    case 0x10:
      Serial.println("  Chip = DS1820/DS18S20");
      type_s = 1;
      break;
    case 0x28:
      Serial.println("  Chip = DS18B20");
      type_s = 0;
      break;
    case 0x22:
      Serial.println("  Chip = DS1822");
      type_s = 0;
      break;
    case 0x26:
      Serial.println("  Chip = DS2438");
      type_s = 2;
      break;
    default:
      Serial.println("Unknown device type.");
      return;
  }

  // this device has temp so let's read it

  ds.reset();               // first clear the 1-wire bus
  ds.select(addr);          // now select the device we just found
  // ds.write(0x44, 1);     // tell it to start a conversion, with parasite power on at the end
  ds.write(0x44, 0);        // or start conversion in powered mode (bus finishes low)

  // just wait a second while the conversion takes place
  // different chips have different conversion times, check the specs, 1 sec is worse case + 250ms
  // you could also communicate with other devices if you like but you would need
  // to already know their address to select them.

  delay(1000);     // maybe 750ms is enough, maybe not, wait 1 sec for conversion

  // we might do a ds.depower() (parasite) here, but the reset will take care of it.

  // first make sure current values are in the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xB8,0);         // Recall Memory 0
  ds.write(0x00,0);         // Recall Memory 0

  // now read the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xBE,0);         // Read Scratchpad
  if (type_s == 2) {
    ds.write(0x00,0);       // The DS2438 needs a page# to read
  }

  // transfer and print the values

  Serial.print("  Data = ");
  Serial.print(present, HEX);
  Serial.print(" ");
  for ( i = 0; i < 9; i++) {           // we need 9 bytes
    data[i] = ds.read();
    Serial.print(data[i], HEX);
    Serial.print(" ");
  }
  Serial.print(" CRC=");
  Serial.print(OneWire::crc8(data, 8), HEX);
  Serial.println();

  // Convert the data to actual temperature
  // because the result is a 16 bit signed integer, it should
  // be stored to an "int16_t" type, which is always 16 bits
  // even when compiled on a 32 bit processor.
  int16_t raw = (data[1] << 8) | data[0];
  if (type_s == 2) raw = (data[2] << 8) | data[1];
  byte cfg = (data[4] & 0x60);

  switch (type_s) {
    case 1:
      raw = raw << 3; // 9 bit resolution default
      if (data[7] == 0x10) {
        // "count remain" gives full 12 bit resolution
        raw = (raw & 0xFFF0) + 12 - data[6];
      }
      celsius = (float)raw * 0.0625;
      break;
    case 0:
      // at lower res, the low bits are undefined, so let's zero them
      if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms
      if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
      if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
      // default is 12 bit resolution, 750 ms conversion time
      celsius = (float)raw * 0.0625;
      break;

    case 2:
      data[1] = (data[1] >> 3) & 0x1f;
      if (data[2] > 127) {
        celsius = (float)data[2] - ((float)data[1] * .03125);
      }else{
        celsius = (float)data[2] + ((float)data[1] * .03125);
      }
  }

  // remove random errors
  if((((celsius <= 0 && celsius > -1) && lastTemp > 5)) || celsius > 125) {
      celsius = lastTemp;
  }

  fahrenheit = celsius * 1.8 + 32.0;
  lastTemp = celsius;
  Serial.print("  Temperature = ");
  Serial.print(celsius);
  Serial.print(" Celsius, ");
  Serial.print(fahrenheit);
  Serial.println(" Fahrenheit");

  // now that we have the readings, we can publish them to the cloud
  String temperature = String(fahrenheit); // store temp in "temperature" string
  Particle.publish("temperature", temperature, PRIVATE); // publish to cloud
}



int songToggle(String command) 
{

    if (command=="mario")
    {
        for (int thisNote = 0; thisNote < 79; thisNote++) 
        {
            // to calculate the note duration, take one second
            // divided by the note type.
            //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
            int tempos = 1000/tempo[thisNote];
            tone(speakerPin, melody[thisNote],tempos);
    
            // to distinguish the notes, set a minimum time between them.
            // the note's duration + 30% seems to work well:
            int pauseBetweenNotes = tempos * 1.80;
            delay(pauseBetweenNotes);
            // stop the tone playing:
            noTone(speakerPin);
           
         }
         
        delay(500);
        return 1;
        
    }
    
    else if (command=="underworld")
    {
        for (int thisNote = 0; thisNote < 57; thisNote++) 
        {
            // to calculate the note duration, take one second
            // divided by the note type.
            //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
            int underworld_tempos = 1000/underworld_tempo[thisNote];
            tone(speakerPin, underworld_melody[thisNote],underworld_tempos);

            // to distinguish the notes, set a minimum time between them.
            // the note's duration + 30% seems to work well:
            int pauseBetweenNotes = underworld_tempos * 1.30;
            delay(pauseBetweenNotes);
            // stop the tone playing:
            noTone(speakerPin);
            
        }
         
        delay(500);
        return 0;
        
    }
    
    else
    {
        return -1;
    }
}

int lToggle(String command)
{
    if (command == "ON")
    {
        
        int motionCounter = 0;
        String mCount = String("0");
        E  = 1;    
        d.reset();
        d.start();
        loop();
        return 1;
        
    }
    
    else if (command =="OFF")
    {
        
        int motionCounter =0;
        String mCount = String("0");
        E =0;   
        d.stop();
        loop();
        return 0;
        
    }
}


void determineMotion()
{ 
    if(motionCounter < 4)
    { 
        
        Particle.publish("PIR status", "no motion detected", PRIVATE); 
        
    } 
    
    else if (motionCounter >= 4)
    {
       
        Particle.publish("PIR status" , "motion detected", PRIVATE); 
        
    }
    
    motionCounter = 0; // reset motion counter
    
}

Photon 3

C/C++
Controls two 7-segment LEDS
int bLed = D7;
int  counterNumber = 0;

//Right Segment
int pin10 = D3; //G IS CENTER LED//
int pin9 = D0;
int pin7 = D1;
int pin6 = D2;
int pin4 = D4;
int pin2 = D5;
int pin1 = D6;

//Left Segment
int pin10L = A2; //G IS CENTER LED//
int pin9L = A1;
int pin7L = WKP;
int pin6L = A0;
int pin4L = A3;
int pin2L = A4;
int pin1L = A5;

int O = LOW;
int F = HIGH; //LOW = ON FOR WHATEVER REASON//
int T = 5000;
int H = 255;


void setup()
{
   
    pinMode(bLed,OUTPUT);
    digitalWrite(bLed, LOW);
    
    pinMode(pin1,OUTPUT);
    pinMode(pin2,OUTPUT);
    pinMode(pin4,OUTPUT);
    pinMode(pin6,OUTPUT);
    pinMode(pin7,OUTPUT);
    pinMode(pin9,OUTPUT);
    pinMode(pin10,OUTPUT);
    
    pinMode(pin1L,OUTPUT);
    pinMode(pin2L,OUTPUT);
    pinMode(pin4L,OUTPUT);
    pinMode(pin6L,OUTPUT);
    pinMode(pin7L,OUTPUT);
    pinMode(pin9L,OUTPUT);
    pinMode(pin10L,OUTPUT);
    
    Particle.subscribe("mCount", myHandler, MY_DEVICES);
  
}


void myHandler(const char *event, const char *data)
{
  
    String countN = String(data); 
    counterNumber = countN.toInt();
    
    switch (counterNumber)
   {
       case 0:
       nZero();
       break;
       
       case 1:
       nOne();
       break;
       
       case 2:
       nTwo();
       break;
       
       case 3:
       nThree();
       break;
       
       case 4:
       nFour();
       break;
       
       case 5:
       nFive();
       break;
       
       case 6:
       nSix();
       break;
       
       case 7:
       nSeven();
       break;
       
       case 8:
       nEight();
       break;
       
       case 9:
       nNine();
       break;
       
       case 10:
       nTen();
       break;
       
       case 11:
       nEleven();
       break;
       
       case 12:
       nTwelve();
       break;
       
       case 13:
       nThirteen();
       break;
       
       case 14:
       nFourteen();
       break;
       
       case 15:
       nFifteen();
       break;
       
       case 16:
       nSixteen();
       break;
       
       case 17:
       nSeventeen();
       break;
       
       case 18:
       nEighteen();
       break;
       
       case 19:
       nNineteen();
       break;
       
       case 20:
       nTwenty();
       break;
       
       default:
       nFlow();
   }
    
}  


void nZero()
{
    
    digitalWrite(pin1L, F);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, F);
    digitalWrite(pin6L, F);
    digitalWrite(pin7L, F);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, F);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, F);
    digitalWrite(pin4, F);
    digitalWrite(pin6, F);
    digitalWrite(pin7, F);
    digitalWrite(pin9, F);
    digitalWrite(pin10, F);
    
}


void nOne()
{
   
    digitalWrite(pin1L, O);
    digitalWrite(pin2L, O);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, O);
    digitalWrite(pin9L, O);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, F);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, F);
    digitalWrite(pin9, F);
    digitalWrite(pin10, F);
    
}


void nTwo()
{
    
    digitalWrite(pin1L, O);
    digitalWrite(pin2L, O);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, O);
    digitalWrite(pin9L, O);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, O);
    digitalWrite(pin2, O);
    digitalWrite(pin4, F);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, F);
    digitalWrite(pin10, O);
    
}



void nThree()
{
    
    digitalWrite(pin1L, O);
    digitalWrite(pin2L, O);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, O);
    digitalWrite(pin9L, O);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, O);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, F);
    digitalWrite(pin10, O);
    
}


void nFour()
{
   
    digitalWrite(pin1L, O);
    digitalWrite(pin2L, O);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, O);
    digitalWrite(pin9L, O);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, F);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, F);
    digitalWrite(pin9, O);
    digitalWrite(pin10, O);
    
}


void nFive()
{
   
    digitalWrite(pin1L, O);
    digitalWrite(pin2L, O);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, O);
    digitalWrite(pin9L, O);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, O);
    digitalWrite(pin4, O);
    digitalWrite(pin6, F);
    digitalWrite(pin7, O);
    digitalWrite(pin9, O);
    digitalWrite(pin10, O);
    
}


void nSix()
{
   
    digitalWrite(pin1L, O);
    digitalWrite(pin2L, O);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, O);
    digitalWrite(pin9L, O);
    digitalWrite(pin10L, H);

    digitalWrite(pin1, O);
    digitalWrite(pin2, O);
    digitalWrite(pin4, O);
    digitalWrite(pin6, F);
    digitalWrite(pin7, O);
    digitalWrite(pin9, O);
    digitalWrite(pin10, O);
    
}


void nSeven()
{
    
    digitalWrite(pin1L, O);
    digitalWrite(pin2L, O);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, O);
    digitalWrite(pin9L, O);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, F);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, F);
    digitalWrite(pin10, F);
    
}


void nEight()
{
  
    digitalWrite(pin1L, O);
    digitalWrite(pin2L, O);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, O);
    digitalWrite(pin9L, O);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, O);
    digitalWrite(pin2, O);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, O);
    digitalWrite(pin10, O);
    
}


void nNine()
{
  
    digitalWrite(pin1L, O);
    digitalWrite(pin2L, O);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, O);
    digitalWrite(pin9L, O);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, F);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, O);
    digitalWrite(pin10, O);
    
}


void nTen()
{
 
    digitalWrite(pin1L, F);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, F);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, O);
    digitalWrite(pin2, O);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, O);
    digitalWrite(pin10, F);
    
}


void nEleven()
{
   
    digitalWrite(pin1L, F);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, F);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, F);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, F);
    digitalWrite(pin9, F);
    digitalWrite(pin10, F);
    
}


void nTwelve()
{
    
    digitalWrite(pin1L, F);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, F);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, O);
    digitalWrite(pin2, O);
    digitalWrite(pin4, F);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, F);
    digitalWrite(pin10, O);
    
}


void nThirteen()
{
    
    digitalWrite(pin1L, F);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, F);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, O);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, F);
    digitalWrite(pin10, O);
    
}


void nFourteen()
{
   
    digitalWrite(pin1L, F);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, F);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, F);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, F);
    digitalWrite(pin9, O);
    digitalWrite(pin10, O);
    
}


void nFifteen()
{
  
    digitalWrite(pin1L, F);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, F);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, O);
    digitalWrite(pin4, O);
    digitalWrite(pin6, F);
    digitalWrite(pin7, O);
    digitalWrite(pin9, O);
    digitalWrite(pin10, O);
    
}


void nSixteen()
{
   
    digitalWrite(pin1L, F);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, F);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, O);
    digitalWrite(pin2, O);
    digitalWrite(pin4, O);
    digitalWrite(pin6, F);
    digitalWrite(pin7, O);
    digitalWrite(pin9, O);
    digitalWrite(pin10, O);
    
}


void nSeventeen()
{
    
    digitalWrite(pin1L, F);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, F);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, F);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, F);
    digitalWrite(pin10, F);
    
}


void nEighteen()
{
  
    digitalWrite(pin1L, F);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, F);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, O);
    digitalWrite(pin2, O);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, O);
    digitalWrite(pin10, O);
    
}


void nNineteen()
{
    digitalWrite(pin1L, F);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, O);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, F);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, H);
    
    digitalWrite(pin1, F);
    digitalWrite(pin2, F);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, O);
    digitalWrite(pin10, O);
    
}


void nTwenty()
{
    digitalWrite(pin1L, O);
    digitalWrite(pin2L, O);
    digitalWrite(pin4L, F);
    digitalWrite(pin6L, O);
    digitalWrite(pin7L, O);
    digitalWrite(pin9L, F);
    digitalWrite(pin10L, O);
    
    digitalWrite(pin1, O);
    digitalWrite(pin2, O);
    digitalWrite(pin4, O);
    digitalWrite(pin6, O);
    digitalWrite(pin7, O);
    digitalWrite(pin9, O);
    digitalWrite(pin10, F);
    
}


void nFlow()
{
   
    digitalWrite(pin1L, O);
    digitalWrite(pin2L, F);
    digitalWrite(pin4L, F);
    digitalWrite(pin6L, F);
    digitalWrite(pin7L, O);
    digitalWrite(pin9L, O);
    digitalWrite(pin10L, O);
    
    digitalWrite(pin1, O);
    digitalWrite(pin2, F);
    digitalWrite(pin4, F);
    digitalWrite(pin6, F);
    digitalWrite(pin7, O);
    digitalWrite(pin9, O);
    digitalWrite(pin10, O);
    
}

Weather Underground JSON

C/C++
Custom JSON for creating a Webhook to pull in the local outside temperature using Weather Underground.
{
"event": "get_my_weather",
"url": "http://api.wunderground.com/api/<putyourkeyhereandremovecarats>/conditions/q/NJ/Princeton.json",
"requestType": "POST",
"headers": null,
"query": null,
"responseTemplate": "{{#response}}{{#current_observation}}{{#estimated}}{{temp_f}}{{/estimated}}{{/current_observation}}{{/response}}",
"json": null,
"auth": null,
"mydevices": true
}

Credits

Daniel Domingo

Daniel Domingo

1 project • 0 followers
Matt Osborne

Matt Osborne

1 project • 0 followers
Tyler Crowder

Tyler Crowder

1 project • 0 followers

Comments