Mohannad Rawashdeh
Published © CC BY-NC-SA

Arduino Control AC Water Heater temperature

How to control water temperature using arduino and water heater element like PID controller

IntermediateFull instructions provided30,341
Arduino Control AC Water Heater temperature

Things used in this project

Hardware components

Breadboard (generic)
Breadboard (generic)
×1
Jumper wires (generic)
Jumper wires (generic)
×1
Arduino Nano R3
Arduino Nano R3
×1
Adafruit OLED 0.96 LCD
×1
Adafruit Waterproof DS18B20 Digital temperature sensor
Adafruit Waterproof DS18B20 Digital temperature sensor
×1
Resistor 4.75k ohm
Resistor 4.75k ohm
×1

Software apps and online services

Arduino IDE
Arduino IDE

Story

Read more

Schematics

Project schematic

Schematic

Code

Arduino Full code

Arduino
the project code
#include <SPI.h>
#include <Wire.h>
#include <OneWire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);
OneWire  ds(2);  // on pin 2 (a 4.7K resistor is necessary)
const int SugarPin  =9;
int HeaterPWM=13;
int voltage_perc;
const int delayTime=1000;
float Temp;
float T_diff=0.0;
float Target_T=90;
int MenuCounter=1;
#if (SSD1306_LCDHEIGHT != 64)
#error("Height incorrect, please fix Adafruit_SSD1306.h!");
#endif

void setup()   {                
  display.begin(SSD1306_SWITCHCAPVCC, 0x3C); 
  display.clearDisplay();
  display.display();
  // define arduino PWM as an output
  pinMode(SugarPin,OUTPUT);
  //define Button as an input with PullUp resistor
  //  pinMode(Sugar_Pot ,INPUT);
  
  MainMenu();
  display.display(); 
  delay(3000); 
  display.clearDisplay();
  display.display();  
  ControlPanel();
}
void MainMenu()
{
  display.setTextSize(3);
  display.setTextColor(WHITE);
  display.setCursor(20,5);  
  display.print("Sugar");      
  display.setCursor(20,35);    
  display.print("Device");    
  delay(3000);
}
void UpdateReading()
{
  display.setTextSize(3);
  display.setCursor(20,30);   
  display.setTextColor(WHITE);  
  switch(MenuCounter)
  {
  case 1:
  display.print(Target_T);    
  break;    
  case 2:
  display.print(Temp);    
  break;
  case 3:
  display.print(voltage_perc);    
  break;  
  }  
  display.display();    
  MenuCounter++;
  if(MenuCounter>3){MenuCounter=1;}
}

void ControlPanel()
{
  display.clearDisplay(); 
  display.display();        
  display.setTextSize(2);
  display.setTextColor(WHITE);
  switch(MenuCounter)
  { 
  case 1:
  display.setCursor(5,5);  
  display.print("Sensor T");        
  break;
  case 2:  
  display.setCursor(5,5);    
  display.print("Target T");    
  break;
  case 3:    
  display.setCursor(5,5);    
  display.print("AC volt%");    
  break;
  }
  display.display();    
}

void loop()
{
 ReadTempSensor();
 delay(500); 
 ControlPanel(); 
 UpdatePWM(); 
 UpdateReading();
}

void UpdatePWM()
{
T_diff=Target_T-Temp;
if(T_diff>=40)
{
 HeaterPWM=64;//full voltage; 
 voltage_perc=100; 
}
else if(T_diff<40&&T_diff>=30 )
{
 HeaterPWM=54;//full voltage; 
 voltage_perc=85;
}
else if(T_diff<30&&T_diff>=20 )
{
 HeaterPWM=48; //60%
 voltage_perc=75; 
}
else if(T_diff<20&&T_diff>=10 )
{
 HeaterPWM=38; //50%
 voltage_perc=50; 
}
else if(T_diff<10&&T_diff>=2 )
{
 HeaterPWM=30; //30%
 voltage_perc=30;
}
else if(T_diff<2 )
{
 HeaterPWM=12; //0%
 voltage_perc=0;
}
analogWrite(SugarPin,HeaterPWM);
}
void ReadTempSensor()
{
  byte i;
  byte present = 0;
  byte type_s;
  byte data[12];
  byte addr[8];
  float celsius, fahrenheit;
  
  if ( !ds.search(addr)) {
    ds.reset_search();
    delay(250);
    return;
  }  

 
  // the first ROM byte indicates which chip
  switch (addr[0]) {
    case 0x10:
      type_s = 1;
      break;
    case 0x28:
      type_s = 0;
      break;
    case 0x22:
      type_s = 0;
      break;
    default:
      return;
  } 

  ds.reset();
  ds.select(addr);
  ds.write(0x44, 1);        // start conversion, with parasite power on at the end
  
  delay(1000);     // maybe 750ms is enough, maybe not
  // we might do a ds.depower() here, but the reset will take care of it.
  
  present = ds.reset();
  ds.select(addr);    
  ds.write(0xBE);         // Read Scratchpad

  for ( i = 0; i < 9; i++) {           // we need 9 bytes
    data[i] = ds.read();
  }

  // Convert the data to actual temperature
  // because the result is a 16 bit signed integer, it should
  // be stored to an "int16_t" type, which is always 16 bits
  // even when compiled on a 32 bit processor.
  int16_t raw = (data[1] << 8) | data[0];
  if (type_s) {
    raw = raw << 3; // 9 bit resolution default
    if (data[7] == 0x10) {
      // "count remain" gives full 12 bit resolution
      raw = (raw & 0xFFF0) + 12 - data[6];
    }
  } else {
    byte cfg = (data[4] & 0x60);
    // at lower res, the low bits are undefined, so let's zero them
    if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms
    else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
    else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
    //// default is 12 bit resolution, 750 ms conversion time
  }
  celsius = (float)raw / 16.0;
  Temp=celsius;
  fahrenheit = celsius * 1.8 + 32.0;
}

Credits

Mohannad Rawashdeh

Mohannad Rawashdeh

3 projects • 15 followers
Mohannad Rawashdeh is an Entrepreneur,and electrical Engineer from Jordan. Founder of Sugar device. http://www.sugarworld.net/

Comments