Mirko Pavleski
Published © GPL3+

Arduino Self-Balancing Robot with MPU6050 and L293

An Arduino-based, self-balancing robot with MPU6050 and L293.

IntermediateFull instructions provided1,993
Arduino Self-Balancing Robot with MPU6050 and L293

Things used in this project

Hardware components

Arduino Nano R3
Arduino Nano R3
×1
SparkFun Triple Axis Accelerometer and Gyro Breakout - MPU-6050
SparkFun Triple Axis Accelerometer and Gyro Breakout - MPU-6050
×1
DC motor geared
×2
Dual H-Bridge motor drivers L293D
Texas Instruments Dual H-Bridge motor drivers L293D
×1
Single Turn Potentiometer- 10k ohms
Single Turn Potentiometer- 10k ohms
×3

Software apps and online services

Arduino IDE
Arduino IDE

Hand tools and fabrication machines

Soldering iron (generic)
Soldering iron (generic)

Story

Read more

Schematics

schematic

Self balancing robot bb zpnhymlnkr

Code

code

Arduino
#include <PID_v1.h>
#include <LMotorController.h>
#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
#endif


#define LOG_INPUT 0
#define MANUAL_TUNING 0
#define LOG_PID_CONSTANTS 0 //MANUAL_TUNING must be 1
#define MOVE_BACK_FORTH 0

#define MIN_ABS_SPEED 30

//MPU


MPU6050 mpu;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorFloat gravity;    // [x, y, z]            gravity vector
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector


//PID


#if MANUAL_TUNING
  double kp , ki, kd;
  double prevKp, prevKi, prevKd;
#endif
double originalSetpoint = 174.29;
double setpoint = originalSetpoint;
double movingAngleOffset = 0.3;
double input, output;
int moveState=0; //0 = balance; 1 = back; 2 = forth

#if MANUAL_TUNING
  PID pid(&input, &output, &setpoint, 0, 0, 0, DIRECT);
#else
  PID pid(&input, &output, &setpoint, 70, 240, 1.9, DIRECT);
#endif


//MOTOR CONTROLLER


int ENA = 3;
int IN1 = 4;
int IN2 = 8;
int IN3 = 5;
int IN4 = 7;
int ENB = 6;


LMotorController motorController(ENA, IN1, IN2, ENB, IN3, IN4, 0.6, 1);


//timers


long time1Hz = 0;
long time5Hz = 0;


volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady()
{
    mpuInterrupt = true;
}


void setup()
{
    // join I2C bus (I2Cdev library doesn't do this automatically)
    #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
        TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

    // initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    Serial.begin(115200);
    while (!Serial); // wait for Leonardo enumeration, others continue immediately

    // initialize device
    Serial.println(F("Initializing I2C devices..."));
    mpu.initialize();

    // verify connection
    Serial.println(F("Testing device connections..."));
    Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

    // load and configure the DMP
    Serial.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();

    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

    // make sure it worked (returns 0 if so)
    if (devStatus == 0)
    {
        // turn on the DMP, now that it's ready
        Serial.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);

        // enable Arduino interrupt detection
        Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(0, dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();

        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        Serial.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
        
        //setup PID
        
        pid.SetMode(AUTOMATIC);
        pid.SetSampleTime(10);
        pid.SetOutputLimits(-255, 255);  
    }
    else
    {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        Serial.print(F("DMP Initialization failed (code "));
        Serial.print(devStatus);
        Serial.println(F(")"));
    }
}


void loop()
{
    // if programming failed, don't try to do anything
    if (!dmpReady) return;

    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize)
    {
        //no mpu data - performing PID calculations and output to motors
        
        pid.Compute();
        motorController.move(output, MIN_ABS_SPEED);
        
        unsigned long currentMillis = millis();

        if (currentMillis - time1Hz >= 1000)
        {
            loopAt1Hz();
            time1Hz = currentMillis;
        }
        
        if (currentMillis - time5Hz >= 5000)
        {
            loopAt5Hz();
            time5Hz = currentMillis;
        }
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();

    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024)
    {
        // reset so we can continue cleanly
        mpu.resetFIFO();
        Serial.println(F("FIFO overflow!"));

    // otherwise, check for DMP data ready interrupt (this should happen frequently)
    }
    else if (mpuIntStatus & 0x02)
    {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
        
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;

        mpu.dmpGetQuaternion(&q, fifoBuffer);
        mpu.dmpGetGravity(&gravity, &q);
        mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
        #if LOG_INPUT
            Serial.print("ypr\t");
            Serial.print(ypr[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(ypr[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(ypr[2] * 180/M_PI);
        #endif
        input = ypr[1] * 180/M_PI + 180;
   }
}


void loopAt1Hz()
{
#if MANUAL_TUNING
    setPIDTuningValues();
#endif
}


void loopAt5Hz()
{
    #if MOVE_BACK_FORTH
        moveBackForth();
    #endif
}


//move back and forth


void moveBackForth()
{
    moveState++;
    if (moveState > 2) moveState = 0;
    
    if (moveState == 0)
      setpoint = originalSetpoint;
    else if (moveState == 1)
      setpoint = originalSetpoint - movingAngleOffset;
    else
      setpoint = originalSetpoint + movingAngleOffset;
}


//PID Tuning (3 potentiometers)

#if MANUAL_TUNING
void setPIDTuningValues()
{
    readPIDTuningValues();
    
    if (kp != prevKp || ki != prevKi || kd != prevKd)
    {
#if LOG_PID_CONSTANTS
        Serial.print(kp);Serial.print(", ");Serial.print(ki);Serial.print(", ");Serial.println(kd);
#endif

        pid.SetTunings(kp, ki, kd);
        prevKp = kp; prevKi = ki; prevKd = kd;
    }
}


void readPIDTuningValues()
{
    int potKp = analogRead(A0);
    int potKi = analogRead(A1);
    int potKd = analogRead(A2);
        
    kp = map(potKp, 0, 1023, 0, 25000) / 100.0; //0 - 250
    ki = map(potKi, 0, 1023, 0, 100000) / 100.0; //0 - 1000
    kd = map(potKd, 0, 1023, 0, 500) / 100.0; //0 - 5
}
#endif

Libraries

Credits

Mirko Pavleski

Mirko Pavleski

2 projects • 44 followers

Comments