Published © MIT

Greenolo: crop storage and logistics monitoring

Remotely monitor storage conditions on-farm and across your supply chain to optimize quality and reduce losses

IntermediateFull instructions provided15 hours680
Greenolo: crop storage and logistics monitoring

Things used in this project

Hardware components

STM32 ST Micro B-L072Z-LRWAN1 Discovery board
×1
STM32 ST X-NUCLEO-IKS01A3
×1

Software apps and online services

AWS IoT
Amazon Web Services AWS IoT
AWS Lambda
Amazon Web Services AWS Lambda
AWS DynamoDB
Amazon Web Services AWS DynamoDB
AWS IAM
Amazon Web Services AWS IAM
AWS SNS
Amazon Web Services AWS SNS
MQTT
MQTT
HardShare
Helium Network

Story

Read more

Code

STM32 Code

C/C++
/*******************************************************************************
 * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman
 * Copyright (c) 2018 Terry Moore, MCCI
 *
 * Permission is hereby granted, free of charge, to anyone
 * obtaining a copy of this document and accompanying files,
 * to do whatever they want with them without any restriction,
 * including, but not limited to, copying, modification and redistribution.
 * NO WARRANTY OF ANY KIND IS PROVIDED.
 *
 * This example sends a valid LoRaWAN packet with payload "Hello,
 * world!", using frequency and encryption settings matching those of
 * the The Things Network. It's pre-configured for the Adafruit
 * Feather M0 LoRa.
 *
 *******************************************************************************/

/*******************************************************************************
 *
 * For Helium developers, follow the Arduino Quickstart guide:
 * https://developer.helium.com/device/arduino-quickstart
 * TLDR: register your device on the console:
 * https://console.helium.com/devices
 *
 * The App EUI (as lsb) and App Key (as msb) get inserted below.
 *
 *******************************************************************************/

#include <SPI.h>
#include <arduino_lmic.h>
#include <arduino_lmic_hal_boards.h>
#include <arduino_lmic_hal_configuration.h>
#include <arduino_lmic_lorawan_compliance.h>
#include <arduino_lmic_user_configuration.h>
#include <hal/hal.h>
#include <lmic.h>

//#include <Adafruit_seesaw.h>
#include <LSM6DSOSensor.h>
#include <LIS2DW12Sensor.h>
#include <LIS2MDLSensor.h>
#include <LPS22HHSensor.h>
#include <STTS751Sensor.h>
#include <HTS221Sensor.h>
#include <CayenneLPP.h>

#ifdef ARDUINO_SAM_DUE
#define DEV_I2C Wire1
#elif defined(ARDUINO_ARCH_STM32)
#define DEV_I2C Wire
#else
#define DEV_I2C Wire
#endif

// Sensors
LSM6DSOSensor *AccGyr;
LPS22HHSensor *PressTemp;
HTS221Sensor *HumTemp;

static uint8_t dataArr[9] = {0};
// This should also be in little endian format
// These are user configurable values and Helium console permits anything
static const u1_t PROGMEM DEVEUI[8] = {0xE6, 0x6B, 0x90, 0xF4, 0x1A, 0x12, 0x96, 0xF3};
void os_getDevEui(u1_t *buf) { memcpy_P(buf, DEVEUI, 8); }

// This is the "App EUI" in Helium. Make sure it is little-endian (lsb).
static const u1_t PROGMEM APPEUI[8] = {0x8B, 0x20, 0x01, 0x62, 0x09, 0xC4, 0xBE, 0xA9};
void os_getArtEui(u1_t *buf) { memcpy_P(buf, APPEUI, 8); }

// This is the "App Key" in Helium. It is big-endian (msb).
static const u1_t PROGMEM APPKEY[16] = {0xA7, 0x44, 0x9C, 0xD5, 0x07, 0x8F, 0x02, 0x19, 0x92, 0xBB, 0xEE, 0xDE, 0x34, 0xF8, 0xB5, 0x60};
void os_getDevKey(u1_t *buf) { memcpy_P(buf, APPKEY, 16); }

CayenneLPP lpp(51);
static osjob_t sendjob;

// Schedule TX every this many seconds (might become longer due to duty
// cycle limitations).
const unsigned TX_INTERVAL = 60;

// Pin mapping
//
// Adafruit BSPs are not consistent -- m0 express defs ARDUINO_SAMD_FEATHER_M0,
// m0 defs ADAFRUIT_FEATHER_M0
//
#if defined(ARDUINO_SAMD_FEATHER_M0) || defined(ADAFRUIT_FEATHER_M0)
// Pin mapping for Adafruit Feather M0 LoRa, etc.
const lmic_pinmap lmic_pins = {
    .nss = 8,
    .rxtx = LMIC_UNUSED_PIN,
    .rst = 4,
    .dio = {3, 6, LMIC_UNUSED_PIN},
    .rxtx_rx_active = 0,
    .rssi_cal = 8, // LBT cal for the Adafruit Feather M0 LoRa, in dB
    .spi_freq = 8000000,
};
#elif defined(ARDUINO_AVR_FEATHER32U4)
// Pin mapping for Adafruit Feather 32u4 LoRa, etc.
// Just like Feather M0 LoRa, but uses SPI at 1MHz; and that's only
// because MCCI doesn't have a test board; probably higher frequencies
// will work.
const lmic_pinmap lmic_pins = {
    .nss = 8,
    .rxtx = LMIC_UNUSED_PIN,
    .rst = 4,
    .dio = {7, 6, LMIC_UNUSED_PIN},
    .rxtx_rx_active = 0,
    .rssi_cal = 8, // LBT cal for the Adafruit Feather 32U4 LoRa, in dB
    .spi_freq = 1000000,
};
#elif defined(ARDUINO_CATENA_4551)
// Pin mapping for Murata module / Catena 4551
const lmic_pinmap lmic_pins = {
    .nss = 7,
    .rxtx = 29,
    .rst = 8,
    .dio =
        {
            25, // DIO0 (IRQ) is D25
            26, // DIO1 is D26
            27, // DIO2 is D27
        },
    .rxtx_rx_active = 1,
    .rssi_cal = 10,
    .spi_freq = 8000000 // 8MHz
};
#elif defined(MCCI_CATENA_4610)
#include "arduino_lmic_hal_boards.h"
const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Catena4610();
#elif defined(ARDUINO_DISCO_L072CZ_LRWAN1)
const lmic_pinmap lmic_pins = *Arduino_LMIC::GetPinmap_Disco_L072cz_Lrwan1();
#else
#error "Unknown target"
#endif

void readSensors()
{
    // Read humidity and temperature.
    float humidity = 0;
    float temperature = 0;
    HumTemp->GetHumidity(&humidity);
    HumTemp->GetTemperature(&temperature);

    // Read pressure and temperature.
    float pressure = 0;
    PressTemp->GetPressure(&pressure);

    // Read accelerometer and gyroscope.
    int32_t accelerometer[3];
    int32_t gyroscope[3];
    AccGyr->Get_X_Axes(accelerometer);
    AccGyr->Get_G_Axes(gyroscope);

    // Clear Payload
    lpp.reset();

    // Pack Packload
    lpp.addTemperature(1, temperature);
    lpp.addRelativeHumidity(2, humidity);
    lpp.addBarometricPressure(3, pressure);
    lpp.addAccelerometer(4, accelerometer[0], accelerometer[1], accelerometer[2]);
    lpp.addGyrometer(5, gyroscope[0], gyroscope[1], gyroscope[2]);

    dataArr[0]=temperature;
    dataArr[1]=humidity;
    dataArr[2]=pressure;
    dataArr[3]=accelerometer[0];
    dataArr[4]= accelerometer[1];
    dataArr[5]=accelerometer[2];
    dataArr[6]=gyroscope[0];
    dataArr[7]=gyroscope[1];
    dataArr[8]=gyroscope[2];

    
    // Debug Print Data
    Serial.print("| Hum[%]: ");
    Serial.print(humidity, 2);
    Serial.print(" | Temp[C]: ");
    Serial.print(temperature, 2);
    Serial.print(" | Pres[hPa]: ");
    Serial.print(pressure, 2);
    Serial.print(" | Acc[mg]: ");
    Serial.print(accelerometer[0]);
    Serial.print(" ");
    Serial.print(accelerometer[1]);
    Serial.print(" ");
    Serial.print(accelerometer[2]);
    Serial.print(" | Gyr[mdps]: ");
    Serial.print(gyroscope[0]);
    Serial.print(" ");
    Serial.print(gyroscope[1]);
    Serial.print(" ");
    Serial.print(gyroscope[2]);
}

void do_send(osjob_t *j)
{
    // Check if there is not a current TX/RX job running
    if (LMIC.opmode & OP_TXRXPEND)
    {
        Serial.println(F("OP_TXRXPEND, not sending"));
    }
    else
    {
        readSensors();
        // Prepare upstream data transmission at the next possible time.
        LMIC_setTxData2(1, dataArr, sizeof(dataArr), 0);
        Serial.println(F("Packet queued"));
    }
    // Next TX is scheduled after TX_COMPLETE event.
}

void onEvent(ev_t ev)
{
    Serial.print(os_getTime());
    Serial.print(": ");
    switch (ev)
    {
    case EV_SCAN_TIMEOUT:
        Serial.println(F("EV_SCAN_TIMEOUT"));
        break;
    case EV_BEACON_FOUND:
        Serial.println(F("EV_BEACON_FOUND"));
        break;
    case EV_BEACON_MISSED:
        Serial.println(F("EV_BEACON_MISSED"));
        break;
    case EV_BEACON_TRACKED:
        Serial.println(F("EV_BEACON_TRACKED"));
        break;
    case EV_JOINING:
        Serial.println(F("EV_JOINING"));
        break;
    case EV_JOIN_TXCOMPLETE:
        Serial.println(F("EV_JOIN_TXCOMPLETE"));
        break;
    case EV_JOINED:
        Serial.println(F("EV_JOINED"));
        {
            u4_t netid = 0;
            devaddr_t devaddr = 0;
            u1_t nwkKey[16];
            u1_t artKey[16];
            LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey);
            Serial.print("netid: ");
            Serial.println(netid, DEC);
            Serial.print("devaddr: ");
            Serial.println(devaddr, HEX);
            Serial.print("artKey: ");
            for (size_t i = 0; i < sizeof(artKey); ++i)
            {
                if (i != 0)
                    Serial.print("-");
                Serial.print(artKey[i], HEX);
            }
            Serial.println("");
            Serial.print("nwkKey: ");
            for (size_t i = 0; i < sizeof(nwkKey); ++i)
            {
                if (i != 0)
                    Serial.print("-");
                Serial.print(nwkKey[i], HEX);
            }
            Serial.println("");
        }
        // Disable link check validation (automatically enabled
        // during join, but because slow data rates change max TX
        // size, we don't use it in this example.
        LMIC_setLinkCheckMode(0);
        break;
    /*
  || This event is defined but not used in the code. No
  || point in wasting codespace on it.
  ||
  || case EV_RFU1:
  ||     Serial.println(F("EV_RFU1"));
  ||     break;
  */
    case EV_JOIN_FAILED:
        Serial.println(F("EV_JOIN_FAILED"));
        break;
    case EV_REJOIN_FAILED:
        Serial.println(F("EV_REJOIN_FAILED"));
        break;
        break;
    case EV_TXCOMPLETE:
        Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
        if (LMIC.txrxFlags & TXRX_ACK)
            Serial.println(F("Received ack"));
        if (LMIC.dataLen)
        {
            Serial.println(F("Received "));
            Serial.println(LMIC.dataLen);
            Serial.println(F(" bytes of payload"));
        }
        // Schedule next transmission
        os_setTimedCallback(&sendjob, os_getTime() + sec2osticks(TX_INTERVAL),
                            do_send);
        break;
    case EV_LOST_TSYNC:
        Serial.println(F("EV_LOST_TSYNC"));
        break;
    case EV_RESET:
        Serial.println(F("EV_RESET"));
        break;
    case EV_RXCOMPLETE:
        // data received in ping slot
        Serial.println(F("EV_RXCOMPLETE"));
        break;
    case EV_LINK_DEAD:
        Serial.println(F("EV_LINK_DEAD"));
        break;
    case EV_LINK_ALIVE:
        Serial.println(F("EV_LINK_ALIVE"));
        break;
    /*
  || This event is defined but not used in the code. No
  || point in wasting codespace on it.
  ||
  || case EV_SCAN_FOUND:
  ||    Serial.println(F("EV_SCAN_FOUND"));
  ||    break;
  */
    case EV_TXSTART:
        Serial.println(F("EV_TXSTART"));
        break;
    default:
        Serial.print(F("Unknown event: "));
        Serial.println((unsigned)ev);
        break;
    }
}

void setup()
{
    // Initialize I2C bus.
    DEV_I2C.begin();

    AccGyr = new LSM6DSOSensor(&DEV_I2C);
    AccGyr->Enable_X();
    AccGyr->Enable_G();
    PressTemp = new LPS22HHSensor(&DEV_I2C);
    PressTemp->Enable();
    HumTemp = new HTS221Sensor(&DEV_I2C);
    HumTemp->Enable();

    delay(5000);
    while (!Serial)
        ;
    Serial.begin(9600);
    Serial.println(F("Starting"));

#if defined(ARDUINO_DISCO_L072CZ_LRWAN1)
    SPI.setMOSI(RADIO_MOSI_PORT);
    SPI.setMISO(RADIO_MISO_PORT);
    SPI.setSCLK(RADIO_SCLK_PORT);
    SPI.setSSEL(RADIO_NSS_PORT);
// SPI.begin();
#endif

#ifdef VCC_ENABLE
    // For Pinoccio Scout boards
    pinMode(VCC_ENABLE, OUTPUT);
    digitalWrite(VCC_ENABLE, HIGH);
    delay(1000);
#endif

    // LMIC init
    os_init();
    // Reset the MAC state. Session and pending data transfers will be discarded.
    LMIC_reset();

    // allow much more clock error than the X/1000 default. See:
    // https://github.com/mcci-catena/arduino-lorawan/issues/74#issuecomment-462171974
    // https://github.com/mcci-catena/arduino-lmic/commit/42da75b56#diff-16d75524a9920f5d043fe731a27cf85aL633
    // the X/1000 means an error rate of 0.1%; the above issue discusses using
    // values up to 10%. so, values from 10 (10% error, the most lax) to 1000
    // (0.1% error, the most strict) can be used.
    LMIC_setClockError(1 * MAX_CLOCK_ERROR / 40);

    LMIC_setLinkCheckMode(0);
    LMIC_setDrTxpow(DR_SF8, 20);
    LMIC_selectSubBand(1);

    // Start job (sending automatically starts OTAA too)
    do_send(&sendjob);
}

void loop() { os_runloop_once(); }

namespace Arduino_LMIC
{

class HalConfiguration_Disco_L072cz_Lrwan1_t : public HalConfiguration_t
{
public:
    enum DIGITAL_PINS : uint8_t
    {
        PIN_SX1276_NSS = 37,
        PIN_SX1276_NRESET = 33,
        PIN_SX1276_DIO0 = 38,
        PIN_SX1276_DIO1 = 39,
        PIN_SX1276_DIO2 = 40,
        PIN_SX1276_RXTX = 21,
    };

    virtual bool queryUsingTcxo(void) override { return false; };
};
// save some typing by bringing the pin numbers into scope
static HalConfiguration_Disco_L072cz_Lrwan1_t myConfig;

static const HalPinmap_t myPinmap = {
    .nss = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_NSS,
    .rxtx = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_RXTX,
    .rst = HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_NRESET,

    .dio =
        {
            HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO0,
            HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO1,
            HalConfiguration_Disco_L072cz_Lrwan1_t::PIN_SX1276_DIO2,
        },
    .rxtx_rx_active = 1,
    .rssi_cal = 10,
    .spi_freq = 8000000, /* 8MHz */
    .pConfig = &myConfig};

}; // end namespace Arduino_LMIC

Helium IoT for Good

Credits

Comments