Salman Faris
Published © LGPL

Malaria Detection using Open Microscope and Deep learning

An open-source microscope that can detect disease like malaria, the main goal is to give quality health checkup to poor people.

AdvancedFull instructions provided10 hours4,625

Things used in this project

Hardware components

NVIDIA Jetson Nano Developer Kit
NVIDIA Jetson Nano Developer Kit
×1
Camera Module
Raspberry Pi Camera Module
×1
High Brightness LED, White
High Brightness LED, White
×1
USB-A to Mini-USB Cable
USB-A to Mini-USB Cable
×1
5v 2A DC Adapter
×1
Nextion NX8048T070 - Generic 7.0" HMI TFT LCD Touch Display
Itead Nextion NX8048T070 - Generic 7.0" HMI TFT LCD Touch Display
×1

Software apps and online services

TensorFlow
TensorFlow
Jetpack SDK
Fusion 360
Autodesk Fusion 360

Hand tools and fabrication machines

3D Printer (generic)
3D Printer (generic)

Story

Read more

Custom parts and enclosures

Illumination and Rear foot

Main Body

Optics Pi Cam

Schematics

Uninfected and Parasitized Model

Blood cells using Open Microscope

Proposed Solution

Code

save_model.py

Python
# USAGE
# python save_model.py --dataset malaria --model saved_model.model

# set the matplotlib backend so figures can be saved in the background
import matplotlib
matplotlib.use("Agg")

# import the necessary packages
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import SGD
from pyimagesearch.resnet import ResNet
from sklearn.metrics import classification_report
from imutils import paths
import matplotlib.pyplot as plt
import numpy as np
import argparse
import os

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", type=str, required=True,
	help="path dataset of input images")
ap.add_argument("-m", "--model", type=str, required=True,
	help="path to trained model")
ap.add_argument("-p", "--plot", type=str, default="plot.png",
	help="path to output loss/accuracy plot")
args = vars(ap.parse_args())

# initialize the number of training epochs and batch size
NUM_EPOCHS = 25
BS = 32

# derive the path to the directories containing the training,
# validation, and testing splits, respectively
TRAIN_PATH = os.path.sep.join([args["dataset"], "training"])
VAL_PATH = os.path.sep.join([args["dataset"], "validation"])
TEST_PATH = os.path.sep.join([args["dataset"], "testing"])

# determine the total number of image paths in training, validation,
# and testing directories
totalTrain = len(list(paths.list_images(TRAIN_PATH)))
totalVal = len(list(paths.list_images(VAL_PATH)))
totalTest = len(list(paths.list_images(TEST_PATH)))

# initialize the training training data augmentation object
trainAug = ImageDataGenerator(
	rescale=1 / 255.0,
	rotation_range=20,
	zoom_range=0.05,
	width_shift_range=0.05,
	height_shift_range=0.05,
	shear_range=0.05,
	horizontal_flip=True,
	fill_mode="nearest")

# initialize the validation (and testing) data augmentation object
valAug = ImageDataGenerator(rescale=1 / 255.0)

# initialize the training generator
trainGen = trainAug.flow_from_directory(
	TRAIN_PATH,
	class_mode="categorical",
	target_size=(64, 64),
	color_mode="rgb",
	shuffle=True,
	batch_size=32)

# initialize the validation generator
valGen = valAug.flow_from_directory(
	VAL_PATH,
	class_mode="categorical",
	target_size=(64, 64),
	color_mode="rgb",
	shuffle=False,
	batch_size=BS)

# initialize the testing generator
testGen = valAug.flow_from_directory(
	TEST_PATH,
	class_mode="categorical",
	target_size=(64, 64),
	color_mode="rgb",
	shuffle=False,
	batch_size=BS)

# initialize our Keras implementation of ResNet model and compile it
model = ResNet.build(64, 64, 3, 2, (2, 2, 3),
	(32, 64, 128, 256), reg=0.0005)
opt = SGD(lr=1e-1, momentum=0.9, decay=1e-1 / NUM_EPOCHS)
model.compile(loss="binary_crossentropy", optimizer=opt,
	metrics=["accuracy"])

# train our Keras model
H = model.fit_generator(
	trainGen,
	steps_per_epoch=totalTrain // BS,
	validation_data=valGen,
	validation_steps=totalVal // BS,
	epochs=NUM_EPOCHS)

# reset the testing generator and then use our trained model to
# make predictions on the data
print("[INFO] evaluating network...")
testGen.reset()
predIdxs = model.predict_generator(testGen,
	steps=(totalTest // BS) + 1)

# for each image in the testing set we need to find the index of the
# label with corresponding largest predicted probability
predIdxs = np.argmax(predIdxs, axis=1)

# show a nicely formatted classification report
print(classification_report(testGen.classes, predIdxs,
	target_names=testGen.class_indices.keys()))

# save the network to disk
print("[INFO] serializing network to '{}'...".format(args["model"]))
model.save(args["model"])

# plot the training loss and accuracy
N = NUM_EPOCHS
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy on Dataset")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="lower left")
plt.savefig(args["plot"])

train_model.py

Python
# USAGE
# python train_model.py

# set the matplotlib backend so figures can be saved in the background
import matplotlib
matplotlib.use("Agg")

# import the necessary packages
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler
from keras.optimizers import SGD
from pyimagesearch.resnet import ResNet
from pyimagesearch import config
from sklearn.metrics import classification_report
from imutils import paths
import matplotlib.pyplot as plt
import numpy as np
import argparse

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--plot", type=str, default="plot.png",
	help="path to output loss/accuracy plot")
args = vars(ap.parse_args())

# define the total number of epochs to train for along with the
# initial learning rate and batch size
NUM_EPOCHS = 20
INIT_LR = 1e-1
BS = 32

def poly_decay(epoch):
	# initialize the maximum number of epochs, base learning rate,
	# and power of the polynomial
	maxEpochs = NUM_EPOCHS
	baseLR = INIT_LR
	power = 1.0

	# compute the new learning rate based on polynomial decay
	alpha = baseLR * (1 - (epoch / float(maxEpochs))) ** power

	# return the new learning rate
	return alpha

# determine the total number of image paths in training, validation,
# and testing directories
totalTrain = len(list(paths.list_images(config.TRAIN_PATH)))
totalVal = len(list(paths.list_images(config.VAL_PATH)))
totalTest = len(list(paths.list_images(config.TEST_PATH)))

# initialize the training training data augmentation object
trainAug = ImageDataGenerator(
	rescale=1 / 255.0,
	rotation_range=20,
	zoom_range=0.05,
	width_shift_range=0.05,
	height_shift_range=0.05,
	shear_range=0.05,
	horizontal_flip=True,
	fill_mode="nearest")

# initialize the validation (and testing) data augmentation object
valAug = ImageDataGenerator(rescale=1 / 255.0)

# initialize the training generator
trainGen = trainAug.flow_from_directory(
	config.TRAIN_PATH,
	class_mode="categorical",
	target_size=(64, 64),
	color_mode="rgb",
	shuffle=True,
	batch_size=BS)

# initialize the validation generator
valGen = valAug.flow_from_directory(
	config.VAL_PATH,
	class_mode="categorical",
	target_size=(64, 64),
	color_mode="rgb",
	shuffle=False,
	batch_size=BS)

# initialize the testing generator
testGen = valAug.flow_from_directory(
	config.TEST_PATH,
	class_mode="categorical",
	target_size=(64, 64),
	color_mode="rgb",
	shuffle=False,
	batch_size=BS)

# initialize our ResNet model and compile it
model = ResNet.build(64, 64, 3, 2, (3, 4, 6),
	(64, 128, 256, 512), reg=0.0005)
opt = SGD(lr=INIT_LR, momentum=0.9)
model.compile(loss="binary_crossentropy", optimizer=opt,
	metrics=["accuracy"])

# define our set of callbacks and fit the model
callbacks = [LearningRateScheduler(poly_decay)]
H = model.fit_generator(
	trainGen,
	steps_per_epoch=totalTrain // BS,
	validation_data=valGen,
	validation_steps=totalVal // BS,
	epochs=NUM_EPOCHS,
	callbacks=callbacks)

# reset the testing generator and then use our trained model to
# make predictions on the data
print("[INFO] evaluating network...")
testGen.reset()
predIdxs = model.predict_generator(testGen,
	steps=(totalTest // BS) + 1)

# for each image in the testing set we need to find the index of the
# label with corresponding largest predicted probability
predIdxs = np.argmax(predIdxs, axis=1)

# show a nicely formatted classification report
print(classification_report(testGen.classes, predIdxs,
	target_names=testGen.class_indices.keys()))

# plot the training loss and accuracy
N = NUM_EPOCHS
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, N), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, N), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy on Dataset")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend(loc="lower left")
plt.savefig(args["plot"])

build_dataset.py

Python
# USAGE
# python build_dataset.py

# import the necessary packages
from pyimagesearch import config
from imutils import paths
import random
import shutil
import os

# grab the paths to all input images in the original input directory
# and shuffle them
imagePaths = list(paths.list_images(config.ORIG_INPUT_DATASET))
random.seed(42)
random.shuffle(imagePaths)

# compute the training and testing split
i = int(len(imagePaths) * config.TRAIN_SPLIT)
trainPaths = imagePaths[:i]
testPaths = imagePaths[i:]

# we'll be using part of the training data for validation
i = int(len(trainPaths) * config.VAL_SPLIT)
valPaths = trainPaths[:i]
trainPaths = trainPaths[i:]

# define the datasets that we'll be building
datasets = [
	("training", trainPaths, config.TRAIN_PATH),
	("validation", valPaths, config.VAL_PATH),
	("testing", testPaths, config.TEST_PATH)
]

# loop over the datasets
for (dType, imagePaths, baseOutput) in datasets:
	# show which data split we are creating
	print("[INFO] building '{}' split".format(dType))

	# if the output base output directory does not exist, create it
	if not os.path.exists(baseOutput):
		print("[INFO] 'creating {}' directory".format(baseOutput))
		os.makedirs(baseOutput)

	# loop over the input image paths
	for inputPath in imagePaths:
		# extract the filename of the input image along with its
		# corresponding class label
		filename = inputPath.split(os.path.sep)[-1]
		label = inputPath.split(os.path.sep)[-2]

		# build the path to the label directory
		labelPath = os.path.sep.join([baseOutput, label])

		# if the label output directory does not exist, create it
		if not os.path.exists(labelPath):
			print("[INFO] 'creating {}' directory".format(labelPath))
			os.makedirs(labelPath)

		# construct the path to the destination image and then copy
		# the image itself
		p = os.path.sep.join([labelPath, filename])
		shutil.copy2(inputPath, p)

Malaria Model

XML
Keras models
No preview (download only).

load_model.py

Python
# USAGE
# python load_model.py --images malaria/testing --model saved_model.model

# import the necessary packages
from keras.preprocessing.image import img_to_array
from keras.models import load_model
from imutils import build_montages
from imutils import paths
import numpy as np
import argparse
import random
import cv2

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--images", required=True,
	help="path to out input directory of images")
ap.add_argument("-m", "--model", required=True,
	help="path to pre-trained model")
args = vars(ap.parse_args())

# load the pre-trained network
print("[INFO] loading pre-trained network...")
model = load_model(args["model"])

# grab all image paths in the input directory and randomly sample them
imagePaths = list(paths.list_images(args["images"]))
random.shuffle(imagePaths)
imagePaths = imagePaths[:16]

# initialize our list of results
results = []

# loop over our sampled image paths
for p in imagePaths:
	# load our original input image
	orig = cv2.imread(p)

	# pre-process our image by converting it from BGR to RGB channel
	# ordering (since our Keras mdoel was trained on RGB ordering),
	# resize it to 64x64 pixels, and then scale the pixel intensities
	# to the range [0, 1]
	image = cv2.cvtColor(orig, cv2.COLOR_BGR2RGB)
	image = cv2.resize(image, (64, 64))
	image = image.astype("float") / 255.0

	# order channel dimensions (channels-first or channels-last)
	# depending on our Keras backend, then add a batch dimension to
	# the image
	image = img_to_array(image)
	image = np.expand_dims(image, axis=0)

	# make predictions on the input image
	pred = model.predict(image)
	pred = pred.argmax(axis=1)[0]

	# an index of zero is the 'parasitized' label while an index of
	# one is the 'uninfected' label
	label = "Parasitized" if pred == 0 else "Uninfected"
	color = (0, 0, 255) if pred == 0 else (0, 255, 0)

	# resize our original input (so we can better visualize it) and
	# then draw the label on the image
	orig = cv2.resize(orig, (128, 128))
	cv2.putText(orig, label, (3, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
		color, 2)

	# add the output image to our list of results
	results.append(orig)

# create a montage using 128x128 "tiles" with 4 rows and 4 columns
montage = build_montages(results, (128, 128), (4, 4))[0]

# show the output montage
cv2.imshow("Results", montage)
cv2.waitKey(0)

Convert Keras model into TensorRT model

Credits

Salman Faris

Salman Faris

26 projects • 411 followers
Maker | Hardware Hacker | Electronics Enthusiast

Comments