John Bradnam
Published © GPL3+

LED Tester & Calculator

A hand held LED tester and calculator that can measure the forward voltage drop and determine the value of the current limiting resistor.

IntermediateFull instructions provided8 hours570
LED Tester & Calculator

Things used in this project

Hardware components

Microchip ATtiny1614 microprocessor
×1
OLED Display 128x64 0.96 inch, I2C Interface
DIYables OLED Display 128x64 0.96 inch, I2C Interface
×1
8mmx8mm push button switch with button top
×1
Tactile Switch, Top Actuated
Tactile Switch, Top Actuated
6mm shaft
×6
Passive components
0805 SMD resistors: 1 x 10R 1 x 39R, 2 x 4K7 1206 SMD capacitor: 10uF ceramic 7473 SMF capacitor: 470uF/10V tantalum
×1
0.7in piezo buzzer
×1
Rechargeable Battery, 3.7 V
Rechargeable Battery, 3.7 V
×1

Software apps and online services

Arduino IDE
Arduino IDE

Hand tools and fabrication machines

3D Printer (generic)
3D Printer (generic)
Soldering iron (generic)
Soldering iron (generic)

Story

Read more

Custom parts and enclosures

STL Files

Files for 3D printing

Schematics

Schematic

PCB

Eagle files

Schematic & PCB in Eagle format

Code

LED_Tester_V3.ino

Arduino
/*
Arduino LED Tester
Based on How to make Arduino LED Tester + Resistor Calc by mircemk
https://hackaday.io/project/193787-how-to-make-arduino-led-tester-resistor-calc

DPIN--39R--+------+---10R---+--TESTLED---GND
           |      |         |
          470u    ATOP     ABOT
           |
          GND

 Measures LED characteristics by charging up the cap to deliver target current and find forward voltage
 From target current, we can calculate R to be used with a design supply voltage and a matching part number.

  CPU:  ATtiny1614
  Display: 0.96" OLED
 
  ATtiny1614 Code: jbrad2089@gmail.com
  
  BOARD: ATtiny1614/1604/814/804/414/404/214/204
  Chip: ATtiny1614
  Clock Speed: 20MHz
  millis()/micros(): "Enabled (default timer)"
  Programmer: jtag2updi (megaTinyCore)

  ATtiny1614 Pins mapped to Ardunio Pins
 
              +--------+
          VCC + 1   14 + GND
  (SS)  0 PA4 + 2   13 + PA3 10 (SCK)
        1 PA5 + 3   12 + PA2 9  (MISO)
  (DAC) 2 PA6 + 4   11 + PA1 8  (MOSI)
        3 PA7 + 5   10 + PA0 11 (UPDI)
  (RXD) 4 PB3 + 6    9 + PB0 7  (SCL)
  (TXD) 5 PB2 + 7    8 + PB1 6  (SDA)
              +--------+

  V2: First release
  V3: Fixed E24 resistor detection for values between 91 & 100
      Fixed wattage string in array for 1W resistors
*/

#include "Tiny8kOLED.h"
#include <Wire.h>

#define LCDINT 500  //lcd update interval
#define KEYINT 200  //key check interval
#define OSAMP 16    //Number of samples

//button constants
#define BTN_RG 0    //PA4
#define BTN_LF 1    //PA5
#define BTN_UP 2    //PA6
#define BTN_DN 4    //PB3
#define SPEAKER 3   //PA7
#define DPIN 5      //PB2
#define ABOT 9      //PA2
#define ATOP 10     //PA3

#define ADC_ABOT ADC_MUXPOS_AIN2_gc
#define ADC_ATOP ADC_MUXPOS_AIN3_gc

//Globals for display
int itest = 10;    //test current, in mA
long vset = 14000;  //display voltage in mV
long vled,vrr,pset;  //LED voltage, Resistor voltage, display power
int irr; //resistor current
long atop, abot, supply;  

//resistors in Jaycar 1/2 W range, part nos start at RR0524 for 10R
uint8_t e24[] {10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47,51,56,62,68,75,82,91};
#define WATTAGE 12
String watts[] {"1/20","1/16","1/10"," 1/8"," 1/4"," 1/2"," 3/4","   1","   2","   5","  10","  20"};
int wattage[] {50,62,100,125,250,500,750,1000,2000,5000,10000,20000};
long lastlcd = 0;     //time of last lcd update
long lastkey=0;       //time of last key check
long rval;            //calculated resistor value for display
long rindex;          //index of selected resistor in rvals[]
bool rvalid = false;  //flag if resistor value is valid 
int pwmout = 0;       //pwm output of current driver

//--------------------------------------------------------------------------
// Hardware setup
//--------------------------------------------------------------------------

void setup() 
{
  pinMode(BTN_LF, INPUT_PULLUP);
  pinMode(BTN_RG, INPUT_PULLUP);
  pinMode(BTN_UP, INPUT_PULLUP);
  pinMode(BTN_DN, INPUT_PULLUP);
  pinMode(SPEAKER, OUTPUT);
  pinMode(DPIN, OUTPUT);         //pwm pin

  //Setup ADC
  VREF.CTRLA = VREF_ADC0REFSEL_1V1_gc;
  ADC0.CTRLC = ADC_REFSEL_VDDREF_gc | ADC_PRESC_DIV256_gc; // 78kHz clock
  ADC0.CTRLA = ADC_ENABLE_bm;                              // Single, 10-bit

  //Display
  oled.begin();
}

//--------------------------------------------------------------------------
// Main program loop
//--------------------------------------------------------------------------

void loop() 
{
  //Read the port analog values
  rvalid = false;            //set flag to not valid
  atop = analogoversample(ADC_ATOP, OSAMP) / OSAMP;
  abot = analogoversample(ADC_ABOT, OSAMP) / OSAMP;  
  long arr = atop - abot;    //this is the analog value across the 10R sense resistor
  if (arr<0) { arr=0; }      //sanity check

  //Convert analong values into voltages
  //468, 537, 4.56V
  supply = round(measureSupplyVoltage() * 1000);         //Get supply voltage and convert to (mV)
  vled = supply * abot / 1023;                           //supplyVoltage=1023 => voltage across LED 
  vrr = supply * arr  / 1023;                            //voltage across sense resistor
  irr = vrr / 10;                                        //led and resistor current in mA (cos it's a 10R resistor)

  //Adjust DPIN to match requested current 
  if (irr < itest) { pwmout++; if (pwmout > 255) { pwmout = 255; }} //ramp up current if too low
  if (irr > itest) { pwmout--; if (pwmout < 0) { pwmout = 0; }}     //ramp down if too high
  if (irr > 24) { pwmout -= 5; if (pwmout < 0) { pwmout = 0; }}     //ramp down quick if too too high
  if (irr > itest*3) { pwmout -= 5; if (pwmout < 0) { pwmout = 0;}} //ramp down quick if too too high
  analogWrite(DPIN, pwmout);                             //output new PWM

  //Get the resistor value for the given voltage and current
  rval = (vset - vled) / itest;                          //mV/mV => ohms resistance of display resistor
  
  long mult = 1;
  while (rval > 100)
  {
    mult = mult * 10;
    rval = round(rval / 10);
  }
  for(int i = 0; i < 24; i++)
  {                             
    if (e24[i] >= rval)
    {
      rindex = i;
      rval = e24[rindex] * mult;
      rvalid = true;
      break;
    }
  }
  //V3 - handle case for > 91
  if (!rvalid)
  {
    if (rval >= 95)
    {
      //Go to the next decade
      mult = mult * 10;
      rindex = 0;
    }
    else
    {
      //Use 91 value
      rindex = 23;
    }
    rval = e24[rindex] * mult;
    rvalid = true;
  }
  
  rvalid = rvalid && (abs(irr-itest) <= (itest/5)+1); //has current settled within 20%?
  rvalid = rvalid && (vled <= vset);                  //if vled>vset, no valid resistor exists
  
  //work out dissipation in ballast resistor if valid)
  pset = (rvalid) ? itest * itest * rval : 0;         //this will be in microwatts (milliamps squared)

  //check if display due to be updated
  if (millis() - lastlcd > LCDINT) 
  {
    lastlcd = millis();
    dolcd();               //update display
  }
  //check if keys due to be checked
  if (millis() - lastkey > KEYINT)
  {    
    lastkey = millis();
    dobuttons();
  }
  delay(1);
}

//--------------------------------------------------------------------------
// Update the display
//--------------------------------------------------------------------------

void dolcd()
{
  char buffer[10];
  
  oled.setFont(FONT8X16);
  oled.setCursor(0,0);     //first line

  //Battery voltage
  sprintf(buffer,"BAT: %2ld\x2e%01ldV ",supply / 1000,(supply / 100) % 10);
  oled.print(buffer);
  
  oled.setCursor(0,2);   //second line
  
  //Calculator settings
  //VLED
  sprintf(buffer,"REQ: %2ld\x2e%01ldV ",vset / 1000,(vset / 100) % 10);
  oled.print(buffer);
  //milliamps
  sprintf(buffer,"%2dmA ", itest);
  oled.print(buffer);

  oled.setCursor(0,4);   //third line

  //Actual settings
  sprintf(buffer,"LED: %2ld\x2e%01ldV ",vled / 1000, (vled / 100) % 10);
  oled.print(buffer);
  //actual LED current
  sprintf(buffer,"%2dmA ", (rvalid) ? irr : 0);
  oled.print(buffer);
  
  oled.setCursor(0,6);   //third line

  //Resistor settings
  oled.print("RES: ");
  if (rvalid)
  {
    lcdprintrval(rval);  //resistor value (4 characters)
    lcdprintwattage(pset);
  }
  else
  {
    oled.print("----");
    oled.print("      ");
  }
}

//--------------------------------------------------------------------------
// Print a value in 10k0 format, always outputs 4 characters
// rval - resistance value to print
//--------------------------------------------------------------------------

void lcdprintrval(long rval)
{
  char buffer[10];
  long mult=1;
  long modval;
  if (rval>999) { mult=1000; }
  if (rval>999999) { mult=1000000; }
  modval = (10 * rval) / mult;    //convert to final format, save a decimal place
  if (modval>999) //nnnM
  {
    sprintf(buffer,"%3ld%c",modval/10,getmultchar(mult));
  }
  else if (modval>99) //nnMn
  {
    sprintf(buffer,"%2ld%c%1ld",modval/10,getmultchar(mult),modval%10);
  } 
  else  //_nMn
  {
    sprintf(buffer," %1ld%c%1ld",modval/10,getmultchar(mult),modval%10);
  }
  oled.print(buffer);
}

//--------------------------------------------------------------------------
// Get the multiplier character
// mult - current multiplier (1, 1000, 1000000)
// returns letter for multiplier
//--------------------------------------------------------------------------

char getmultchar(long mult)
{
  switch (mult)
  {
    case 1: return('R'); break;
    case 1000:  return('k'); break;
    case 1000000: return('M'); break;
  }
  return('?');
}

//--------------------------------------------------------------------------
// Print the wattage 
// pset - Watts in micro Watts
//--------------------------------------------------------------------------

void lcdprintwattage(long power)
{
  int p = (int)round(power / 1000);   //Convert to mW
  if (p <= 20000)
  {
    oled.print(' ');
    for(int i = 0; i < WATTAGE; i++)
    {                             
      if (wattage[i] >= p)
      {
        oled.print(watts[i]);
        break;
      }
    }
    oled.print('W');
  }
  else
  {
    oled.print("  >20W");
  }
}

//--------------------------------------------------------------------------
// Test if button is pressed
// Debounces the switch
// pin - pin button is attached to
// waitforrelease - true to wait for button to be released
// returns true if button is pressed
//--------------------------------------------------------------------------

bool button_pressed(int pin, bool waitforrelease)
{
  if (digitalRead(pin) == LOW)
  {
    delay(10);
    if (digitalRead(pin) == LOW)
    {
      if (waitforrelease)
      {
        while (digitalRead(pin) == LOW)
          ;
      }
      return true;
    }
  }
  return false;
}

//--------------------------------------------------------------------------
// Updates variables based on switches
//--------------------------------------------------------------------------

void dobuttons()
{      
    if (button_pressed(BTN_LF, false)) { itest = max(itest - 1,1); }
    if (button_pressed(BTN_RG, false)) { itest = min(itest + 1,20); }
    if (button_pressed(BTN_UP, false)) { vset = min(vset + 1000, 99000); }
    if (button_pressed(BTN_DN, false)) { vset = max(vset - 1000, 0); }
}

//--------------------------------------------------------------------------
// Read pin samples times and return sum
// adcMux - ADC_Ax constant for the pin to measure
// samples - number of times to read port
// returns sum of samples
//--------------------------------------------------------------------------

long analogoversample(uint8_t adcMux,int samples)
{
  long n = 0;
  for(int i = 0; i < samples; i++)
  {
    n = n + measureAnalog(adcMux);
  }
  return n;
}
 
//--------------------------------------------------------------------------
// Measure supply voltage
// Source: David Johnson-Davies - www.technoblogy.com - 13th April 2021
// returns supply voltage to ATtiny1614
//--------------------------------------------------------------------------

float measureSupplyVoltage() 
{
  ADC0.MUXPOS = ADC_MUXPOS_INTREF_gc;                  // Measure INTREF
  ADC0.COMMAND = ADC_STCONV_bm;                        // Start conversion
  while (ADC0.COMMAND & ADC_STCONV_bm);                // Wait for completion
  uint16_t adc_reading = ADC0.RES;                     // ADC conversion result
  return 1126.4 / adc_reading;                         // Supply voltage in volts
}

//--------------------------------------------------------------------------
// Measure voltage of a given pin
// adcMux - ADC_Ax constant for the pin to measure
// returns analog port measurement (0 to 1023)
//--------------------------------------------------------------------------

long measureAnalog(uint8_t adcMux) 
{
  ADC0.MUXPOS = adcMux;                                // Measure Analog pin
  ADC0.COMMAND = ADC_STCONV_bm;                        // Start conversion
  while (ADC0.COMMAND & ADC_STCONV_bm);                // Wait for completion
  return (long)ADC0.RES;                               // ADC conversion result
}

Tiny8kOLED.h

C Header File
/*
 * SSD1306xLED - Drivers for SSD1306 controlled dot matrix OLED/PLED 128x64 displays
 *
 * @created: 2014-08-12
 * @author: Neven Boyanov
 *
 * Source code available at: https://bitbucket.org/tinusaur/ssd1306xled
 * Modified by M.V. Predoi 2018-09-25
 */

#include <stdint.h>
#include <Arduino.h>
#include <Wire.h>  
#include <util/delay.h>

/* Uncomment from the 3 line below this note, the fonts you intend to use:
*  FONT6X8  = 764 bytes
*  FONT8X16 = 1776 bytes
*  FONT16X32= 1334 bytes
*/
 //#define FONT6X8		0
 #define FONT8X16	1
 //#define FONT16X32	2

// ----------------------------------------------------------------------------

#ifndef SSD1306
	#define SSD1306		0x3C	// Slave address
#endif

// ----------------------------------------------------------------------------

class SSD1306Device: public Print {

    public:
		SSD1306Device(void);
		void begin(void);
		void setFont(uint8_t font);
		void ssd1306_send_command(uint8_t command);
		void ssd1306_send_data_byte(uint8_t byte);
		void ssd1306_send_data_start(void);
		void ssd1306_send_data_stop(void);
		void setCursor(uint8_t x, uint8_t y);
		void fill(uint8_t fill);
		void clear(void);
		void bitmap(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1, const uint8_t bitmap[]);
		void ssd1306_send_command_start(void);
		void ssd1306_send_command_stop(void);
		void ssd1306_char_f8x16(uint8_t x, uint8_t y, const char ch[]);
    void ssd1306_sleep();
		virtual size_t write(byte c);
  		using Print::write;


};


extern SSD1306Device oled;

// ----------------------------------------------------------------------------

Tiny8kOLED.cpp

C/C++
/*
 * SSD1306xLED - Drivers for SSD1306 controlled dot matrix OLED/PLED 128x64 displays
 *
 * @created: 2014-08-12
 * @author: Neven Boyanov
 * @modifications: John Bradnam 2021-05-03
 *    - modified for ATtiny1614
 *    - added sleep method 
 *    - rotated display 180%
 */

// ----------------------------------------------------------------------------

#include <stdlib.h>
#include <avr/io.h>
#include <avr/sleep.h>
#include <avr/pgmspace.h>

#include "Tiny8kOLED.h"

#ifdef FONT6X8			// In case font6x8 is defined: load it
	#include "font6x8.h"
#endif

#ifdef FONT8X16			     // In case font8x16 is defined: load it
	#include "font8x16.h"
#endif

#ifdef FONT16X32			     // In case font16x32 is defined: load it
	#include "font16x32.h"
#endif



// ----------------------------------------------------------------------------

#define ROTATE_SSD1306

const uint8_t ssd1306_init_sequence [] PROGMEM = {	// Initialization Sequence
	0xAE,			// Display OFF (sleep mode)
	0x20, 0b00,		// Set Memory Addressing Mode
					// 00=Horizontal Addressing Mode; 01=Vertical Addressing Mode;
					// 10=Page Addressing Mode (RESET); 11=Invalid
	0xB0,			// Set Page Start Address for Page Addressing Mode, 0-7
#ifdef ROTATE_SSD1306
	0xC8,			// Set COM Output Scan Direction (INC or DEC 0xC0 or 0xC8) <==
#else
  0xC0,     // Set COM Output Scan Direction (INC or DEC 0xC0 or 0xC8) <==
#endif  
	0x00,			// ---set low column address
	0x10,			// ---set high column address
	0x40,			// --set start line address
	0x81, 0x3F,		// Set contrast control register
#ifdef ROTATE_SSD1306
	0xA1,			// Set Segment Re-map. (A0=address mapped; A1=address 127 mapped) <== 
#else
  0xA0,     // Set Segment Re-map. (A0=address mapped; A1=address 127 mapped) <== 
#endif  
	0xA6,			// Set display mode. A6=Normal; A7=Inverse
	0xA8, 0x3F,		// Set multiplex ratio(1 to 64)
	0xA4,			// Output RAM to Display
					// 0xA4=Output follows RAM content; 0xA5,Output ignores RAM content
	0xD3, 0x00,		// Set display offset. 00 = no offset
	0xD5,			// --set display clock divide ratio/oscillator frequency
	0xF0,			// --set divide ratio
	0xD9, 0x22,		// Set pre-charge period
	0xDA, 0x12,		// Set com pins hardware configuration		
	0xDB,			// --set vcomh
	0x20,			// 0x20,0.77xVcc
	0x8D, 0x14,		// Set DC-DC enable
	0xAF			// Display ON in normal mode
	
};

uint8_t oledFont, ci, oledX, oledY;

SSD1306Device::SSD1306Device(void){}

void SSD1306Device::begin(void)
{
	Wire.begin();
	
	for (uint8_t i = 0; i < sizeof (ssd1306_init_sequence); i++) {
		ssd1306_send_command(pgm_read_byte(&ssd1306_init_sequence[i]));
	}
	clear();
}


void SSD1306Device::setFont(uint8_t font)
{
	oledFont = font;
}

void SSD1306Device::ssd1306_send_command_start(void) {
	Wire.beginTransmission(SSD1306);
	Wire.write(0x00);	// write command
}

void SSD1306Device::ssd1306_send_command_stop(void) {
	Wire.endTransmission();
}

void SSD1306Device::ssd1306_send_data_byte(uint8_t byte)
{
/*
	//if(Wire.writeAvailable()){
		ssd1306_send_data_stop();
		ssd1306_send_data_start();
	//}
*/
	Wire.write(byte);
	
}

void SSD1306Device::ssd1306_send_command(uint8_t command)
{
	ssd1306_send_command_start();
	Wire.write(command);
	ssd1306_send_command_stop();
}

void SSD1306Device::ssd1306_send_data_start(void)
{
	Wire.beginTransmission(SSD1306);
	Wire.write(0x40);	//write data
}

void SSD1306Device::ssd1306_send_data_stop(void)
{
	Wire.endTransmission();
}

void SSD1306Device::setCursor(uint8_t x, uint8_t y)
{
	ssd1306_send_command_start();
	Wire.write(0xb0 + y);
	Wire.write(((x & 0xf0) >> 4) | 0x10); // | 0x10
	Wire.write((x & 0x0f) | 0x01); // | 0x01
	ssd1306_send_command_stop();
	oledX = x;
	oledY = y;
}

void SSD1306Device::clear(void)
{
	fill(0x00);
}

void SSD1306Device::fill(uint8_t fill)
{
	uint8_t m,n,o;
	for (m = 0; m < 8; m++)
	{
		ssd1306_send_command(0xb0 + m);	// page0 - page1
		ssd1306_send_command(0x00);		// low column start address
		ssd1306_send_command(0x10);		// high column start address
		ssd1306_send_data_start();
		for (n = 0, o = 0; n < 128; n++)
		{
			ssd1306_send_data_byte(fill);
      o++;
      if (o == BUFFER_LENGTH - 1)
      {
        ssd1306_send_data_stop();
        ssd1306_send_data_start();
        o = 0;
      }
		}
		ssd1306_send_data_stop();
	}
	setCursor(0, 0);
}

size_t SSD1306Device::write(byte c) {
// This function is modified to work also with 16x32 fonts for digits
//  Useful to display only numerical results in Largest Size!
//=================================================================
#ifdef FONT16X32	
if (oledFont==2) {  
  
  // If "font16x32.h" contains only 10 symbols (0..9) rotated 90deg. right, then:
  ci = c - 44;    // Only symbols ,-./0...9:  are available in 13kB file [0=char(16)]
  if (oledX > 112){ // long numbers are cut to max 8 digits
    return 1;
  }
            
  for (uint8_t j = 3; j > 1 ; j--) {    // Send from top to bottom 2*16 bytes on rows
    ssd1306_send_data_start();
    for (uint8_t i = 0; i < 16; i++) {  // Send 16 bytes as rows, at the same y position
      Wire.write(pgm_read_byte(&ssd1306xled_font16x32[ci * 64 + 4*i +j]));
    }
    ssd1306_send_data_stop();
    setCursor(oledX, oledY + 4-j);    // Prepare position of next row of 16 bytes under the first one
  }

  setCursor(oledX, oledY-1);        // Return a row higher 
  for (uint8_t j = 3; j > 1 ; j--) {    // Send from the lower half 2*16 bytes on rows
    ssd1306_send_data_start();
    for (uint8_t i = 0; i < 16; i++) {  // Send from top to bottom 2*16 bytes
      Wire.write(pgm_read_byte(&ssd1306xled_font16x32[ci * 64 + 4*i +j -2]));
    }
    ssd1306_send_data_stop();
    setCursor(oledX, oledY+1);        // Relative move lower by 1 byte for last 16 bytes
  }
  setCursor(oledX+16, oledY-4);       // Move cursor for next digit
}
#endif
//==================================================================
#ifdef FONT8X16
if(oledFont==1) { 
	if (c == '\n') {
		oledY++;
  		if (oledY > 6) {
			oledY = 6;
  		}
  		setCursor(0, oledY);
			return 1;
      }

	ci = c - 32;

	if (oledX > 120) {
		oledY+=2;
		if (oledY > 6) {
			oledY = 6;
		}
			setCursor(0, oledY);
	}
	ssd1306_send_data_start();
	for (uint8_t i = 0; i < 8; i++) {
		Wire.write(pgm_read_byte(&ssd1306xled_font8x16[ci * 16 + i]));
	}
	ssd1306_send_data_stop();
	setCursor(oledX, oledY + 1);
	ssd1306_send_data_start();
	for (uint8_t i = 0; i < 8; i++) {
		Wire.write(pgm_read_byte(&ssd1306xled_font8x16[ci * 16 + i + 8]));
	}
	ssd1306_send_data_stop();
	setCursor(oledX + 8, oledY - 1);
 }
#endif
//==================================================================
#ifdef FONT6X8
 if(oledFont== 0) { 
	if (c == '\n') {
		if (oledFont == FONT6X8) {
			oledY++;
			if (oledY > 7) {
				oledY = 7;
			}
			setCursor(0, oledY);
			return 1;
		}
	}
	ci = c - 32;
	if (oledX > 122) {
		oledY++;
		if (oledY > 7) {
			oledY = 7;
		}
		setCursor(0, oledY);
	}

	ssd1306_send_data_start();
	for (uint8_t i= 0; i < 6; i++) {
		ssd1306_send_data_byte(pgm_read_byte(&ssd1306xled_font6x8[ci * 6 + i]));
	}
	ssd1306_send_data_stop();
	oledX+=6; // we don't need to call setCursor for every character.
 }
#endif
//==================================================================
return 1;
}


void SSD1306Device::bitmap(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1, const uint8_t bitmap[])
{
	uint16_t j = 0;
	uint8_t y, x;
	// if (y1 % 8 == 0) y = y1 / 8; 	// else y = y1 / 8 + 1;		// tBUG :: this does nothing as y is initialized below
	//	THIS PARAM rule on y makes any adjustment here WRONG   //usage oled.bitmap(START X IN PIXELS, START Y IN ROWS OF 8 PIXELS, END X IN PIXELS, END Y IN ROWS OF 8 PIXELS, IMAGE ARRAY);
 	for (y = y0; y < y1; y++)
	{
		setCursor(x0,y);
		ssd1306_send_data_start();
		for (x = x0; x < x1; x++)
		{
			ssd1306_send_data_byte(pgm_read_byte(&bitmap[j++]));
		}
		ssd1306_send_data_stop();
	}
	setCursor(0, 0);
}

//--------------------- Extra -------------------------------

//Shut down OLED and put ATtiny to sleep
//Will wake up when LEFT button is pressed
void SSD1306Device::ssd1306_sleep() 
{
  clear();
  ssd1306_send_command(0xAE);
  //cbi(ADCSRA,ADEN);                   // switch Analog to Digitalconverter OFF
  set_sleep_mode(SLEEP_MODE_PWR_DOWN);  // sleep mode is set here
  sleep_enable();
  sleep_mode();                         // System actually sleeps here
  sleep_disable();                      // System continues execution here when watchdog timed out
  //sbi(ADCSRA,ADEN);                   // switch Analog to Digitalconverter ON
  ssd1306_send_command(0xAF);
}

SSD1306Device oled;

// ----------------------------------------------------------------------------

font8x16.h

C Header File
/*
 * SSD1306xLED - Drivers for SSD1306 controlled dot matrix OLED/PLED 128x64 displays
 *
 * @created: 2014-08-12
 * @author: Neven Boyanov
 *
 * Source code available at: https://bitbucket.org/tinusaur/ssd1306xled
 *
 */

// ----------------------------------------------------------------------------

#include <avr/pgmspace.h>

// ----------------------------------------------------------------------------

/* Standard ASCII 8x16 font */
const uint8_t ssd1306xled_font8x16 [] PROGMEM = {
  0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // 0
  0x00,0x00,0x00,0xF8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x33,0x30,0x00,0x00,0x00, // ! 1
  0x00,0x10,0x0C,0x06,0x10,0x0C,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // " 2
  0x40,0xC0,0x78,0x40,0xC0,0x78,0x40,0x00,0x04,0x3F,0x04,0x04,0x3F,0x04,0x04,0x00, // # 3
  0x00,0x70,0x88,0xFC,0x08,0x30,0x00,0x00,0x00,0x18,0x20,0xFF,0x21,0x1E,0x00,0x00, // $ 4
  0xF0,0x08,0xF0,0x00,0xE0,0x18,0x00,0x00,0x00,0x21,0x1C,0x03,0x1E,0x21,0x1E,0x00, // % 5
  0x00,0xF0,0x08,0x88,0x70,0x00,0x00,0x00,0x1E,0x21,0x23,0x24,0x19,0x27,0x21,0x10, // & 6
  0x10,0x16,0x0E,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // ' 7
  0x00,0x00,0x00,0xE0,0x18,0x04,0x02,0x00,0x00,0x00,0x00,0x07,0x18,0x20,0x40,0x00, // ( 8
  0x00,0x02,0x04,0x18,0xE0,0x00,0x00,0x00,0x00,0x40,0x20,0x18,0x07,0x00,0x00,0x00, // ) 9
  0x40,0x40,0x80,0xF0,0x80,0x40,0x40,0x00,0x02,0x02,0x01,0x0F,0x01,0x02,0x02,0x00, // * 10
  0x00,0x00,0x00,0xF0,0x00,0x00,0x00,0x00,0x01,0x01,0x01,0x1F,0x01,0x01,0x01,0x00, // + 11
  0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0xB0,0x70,0x00,0x00,0x00,0x00,0x00, // , 12
  0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x01, // - 13
  0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00,0x00,0x00, // . 14
  0x00,0x00,0x00,0x00,0x80,0x60,0x18,0x04,0x00,0x60,0x18,0x06,0x01,0x00,0x00,0x00, // / 15
  0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x0F,0x10,0x20,0x20,0x10,0x0F,0x00, // 0 16
  0x00,0x10,0x10,0xF8,0x00,0x00,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00, // 1 17
  0x00,0x70,0x08,0x08,0x08,0x88,0x70,0x00,0x00,0x30,0x28,0x24,0x22,0x21,0x30,0x00, // 2 18
  0x00,0x30,0x08,0x88,0x88,0x48,0x30,0x00,0x00,0x18,0x20,0x20,0x20,0x11,0x0E,0x00, // 3 19
  0x00,0x00,0xC0,0x20,0x10,0xF8,0x00,0x00,0x00,0x07,0x04,0x24,0x24,0x3F,0x24,0x00, // 4 20
  0x00,0xF8,0x08,0x88,0x88,0x08,0x08,0x00,0x00,0x19,0x21,0x20,0x20,0x11,0x0E,0x00, // 5 21
  0x00,0xE0,0x10,0x88,0x88,0x18,0x00,0x00,0x00,0x0F,0x11,0x20,0x20,0x11,0x0E,0x00, // 6 22
  0x00,0x38,0x08,0x08,0xC8,0x38,0x08,0x00,0x00,0x00,0x00,0x3F,0x00,0x00,0x00,0x00, // 7 23
  0x00,0x70,0x88,0x08,0x08,0x88,0x70,0x00,0x00,0x1C,0x22,0x21,0x21,0x22,0x1C,0x00, // 8 24
  0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00,0x00,0x00,0x31,0x22,0x22,0x11,0x0F,0x00, // 9 25
  0x00,0x00,0x00,0xC0,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00, // : 26
  0x00,0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0x60,0x00,0x00,0x00,0x00, // ; 27
  0x00,0x00,0x80,0x40,0x20,0x10,0x08,0x00,0x00,0x01,0x02,0x04,0x08,0x10,0x20,0x00, // < 28
  0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x00,0x04,0x04,0x04,0x04,0x04,0x04,0x04,0x00, // = 29
  0x00,0x08,0x10,0x20,0x40,0x80,0x00,0x00,0x00,0x20,0x10,0x08,0x04,0x02,0x01,0x00, // > 30
  0x00,0x70,0x48,0x08,0x08,0x08,0xF0,0x00,0x00,0x00,0x00,0x30,0x36,0x01,0x00,0x00, // ? 31
  0xC0,0x30,0xC8,0x28,0xE8,0x10,0xE0,0x00,0x07,0x18,0x27,0x24,0x23,0x14,0x0B,0x00, // @ 32
  0x00,0x00,0xC0,0x38,0xE0,0x00,0x00,0x00,0x20,0x3C,0x23,0x02,0x02,0x27,0x38,0x20, // A 33
  0x08,0xF8,0x88,0x88,0x88,0x70,0x00,0x00,0x20,0x3F,0x20,0x20,0x20,0x11,0x0E,0x00, // B 34
  0xC0,0x30,0x08,0x08,0x08,0x08,0x38,0x00,0x07,0x18,0x20,0x20,0x20,0x10,0x08,0x00, // C 35
  0x08,0xF8,0x08,0x08,0x08,0x10,0xE0,0x00,0x20,0x3F,0x20,0x20,0x20,0x10,0x0F,0x00, // D 36
  0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00,0x20,0x3F,0x20,0x20,0x23,0x20,0x18,0x00, // E 37
  0x08,0xF8,0x88,0x88,0xE8,0x08,0x10,0x00,0x20,0x3F,0x20,0x00,0x03,0x00,0x00,0x00, // F 38
  0xC0,0x30,0x08,0x08,0x08,0x38,0x00,0x00,0x07,0x18,0x20,0x20,0x22,0x1E,0x02,0x00, // G 39
  0x08,0xF8,0x08,0x00,0x00,0x08,0xF8,0x08,0x20,0x3F,0x21,0x01,0x01,0x21,0x3F,0x20, // H 40
  0x00,0x08,0x08,0xF8,0x08,0x08,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00, // I 41
  0x00,0x00,0x08,0x08,0xF8,0x08,0x08,0x00,0xC0,0x80,0x80,0x80,0x7F,0x00,0x00,0x00, // J 42
  0x08,0xF8,0x88,0xC0,0x28,0x18,0x08,0x00,0x20,0x3F,0x20,0x01,0x26,0x38,0x20,0x00, // K 43
  0x08,0xF8,0x08,0x00,0x00,0x00,0x00,0x00,0x20,0x3F,0x20,0x20,0x20,0x20,0x30,0x00, // L 44
  0x08,0xF8,0xF8,0x00,0xF8,0xF8,0x08,0x00,0x20,0x3F,0x00,0x3F,0x00,0x3F,0x20,0x00, // M 45
  0x08,0xF8,0x30,0xC0,0x00,0x08,0xF8,0x08,0x20,0x3F,0x20,0x00,0x07,0x18,0x3F,0x00, // N 46
  0xE0,0x10,0x08,0x08,0x08,0x10,0xE0,0x00,0x0F,0x10,0x20,0x20,0x20,0x10,0x0F,0x00, // O 47
  0x08,0xF8,0x08,0x08,0x08,0x08,0xF0,0x00,0x20,0x3F,0x21,0x01,0x01,0x01,0x00,0x00, // P 48
  0xE0,0x10,0x08,0x08,0x08,0x10,0xE0,0x00,0x0F,0x18,0x24,0x24,0x38,0x50,0x4F,0x00, // Q 49
  0x08,0xF8,0x88,0x88,0x88,0x88,0x70,0x00,0x20,0x3F,0x20,0x00,0x03,0x0C,0x30,0x20, // R 50
  0x00,0x70,0x88,0x08,0x08,0x08,0x38,0x00,0x00,0x38,0x20,0x21,0x21,0x22,0x1C,0x00, // S 51
  0x18,0x08,0x08,0xF8,0x08,0x08,0x18,0x00,0x00,0x00,0x20,0x3F,0x20,0x00,0x00,0x00, // T 52
  0x08,0xF8,0x08,0x00,0x00,0x08,0xF8,0x08,0x00,0x1F,0x20,0x20,0x20,0x20,0x1F,0x00, // U 53
  0x08,0x78,0x88,0x00,0x00,0xC8,0x38,0x08,0x00,0x00,0x07,0x38,0x0E,0x01,0x00,0x00, // V 54
  0xF8,0x08,0x00,0xF8,0x00,0x08,0xF8,0x00,0x03,0x3C,0x07,0x00,0x07,0x3C,0x03,0x00, // W 55
  0x08,0x18,0x68,0x80,0x80,0x68,0x18,0x08,0x20,0x30,0x2C,0x03,0x03,0x2C,0x30,0x20, // X 56
  0x08,0x38,0xC8,0x00,0xC8,0x38,0x08,0x00,0x00,0x00,0x20,0x3F,0x20,0x00,0x00,0x00, // Y 57
  0x10,0x08,0x08,0x08,0xC8,0x38,0x08,0x00,0x20,0x38,0x26,0x21,0x20,0x20,0x18,0x00, // Z 58
  0x00,0x00,0x00,0xFE,0x02,0x02,0x02,0x00,0x00,0x00,0x00,0x7F,0x40,0x40,0x40,0x00, // [ 59
  0x00,0x0C,0x30,0xC0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x06,0x38,0xC0,0x00, // \ 60
  0x00,0x02,0x02,0x02,0xFE,0x00,0x00,0x00,0x00,0x40,0x40,0x40,0x7F,0x00,0x00,0x00, // ] 61
  0x00,0x00,0x04,0x02,0x02,0x02,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // ^ 62
  0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, // _ 63
  0x00,0x02,0x02,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // ` 64
  0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,0x00,0x19,0x24,0x22,0x22,0x22,0x3F,0x20, // a 65
  0x08,0xF8,0x00,0x80,0x80,0x00,0x00,0x00,0x00,0x3F,0x11,0x20,0x20,0x11,0x0E,0x00, // b 66
  0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00,0x00,0x0E,0x11,0x20,0x20,0x20,0x11,0x00, // c 67
  0x00,0x00,0x00,0x80,0x80,0x88,0xF8,0x00,0x00,0x0E,0x11,0x20,0x20,0x10,0x3F,0x20, // d 68
  0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,0x00,0x1F,0x22,0x22,0x22,0x22,0x13,0x00, // e 69
  0x00,0x80,0x80,0xF0,0x88,0x88,0x88,0x18,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00, // f 70
  0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x00,0x00,0x6B,0x94,0x94,0x94,0x93,0x60,0x00, // g 71
  0x08,0xF8,0x00,0x80,0x80,0x80,0x00,0x00,0x20,0x3F,0x21,0x00,0x00,0x20,0x3F,0x20, // h 72
  0x00,0x80,0x98,0x98,0x00,0x00,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00, // i 73
  0x00,0x00,0x00,0x80,0x98,0x98,0x00,0x00,0x00,0xC0,0x80,0x80,0x80,0x7F,0x00,0x00, // j 74
  0x08,0xF8,0x00,0x00,0x80,0x80,0x80,0x00,0x20,0x3F,0x24,0x02,0x2D,0x30,0x20,0x00, // k 75
  0x00,0x08,0x08,0xF8,0x00,0x00,0x00,0x00,0x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00, // l 76
  0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x00,0x20,0x3F,0x20,0x00,0x3F,0x20,0x00,0x3F, // m 77
  0x80,0x80,0x00,0x80,0x80,0x80,0x00,0x00,0x20,0x3F,0x21,0x00,0x00,0x20,0x3F,0x20, // n 78
  0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,0x00,0x1F,0x20,0x20,0x20,0x20,0x1F,0x00, // o 79
  0x80,0x80,0x00,0x80,0x80,0x00,0x00,0x00,0x80,0xFF,0xA1,0x20,0x20,0x11,0x0E,0x00, // p 80
  0x00,0x00,0x00,0x80,0x80,0x80,0x80,0x00,0x00,0x0E,0x11,0x20,0x20,0xA0,0xFF,0x80, // q 81
  0x80,0x80,0x80,0x00,0x80,0x80,0x80,0x00,0x20,0x20,0x3F,0x21,0x20,0x00,0x01,0x00, // r 82
  0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x00,0x00,0x33,0x24,0x24,0x24,0x24,0x19,0x00, // s 83
  0x00,0x80,0x80,0xE0,0x80,0x80,0x00,0x00,0x00,0x00,0x00,0x1F,0x20,0x20,0x00,0x00, // t 84
  0x80,0x80,0x00,0x00,0x00,0x80,0x80,0x00,0x00,0x1F,0x20,0x20,0x20,0x10,0x3F,0x20, // u 85
  0x80,0x80,0x80,0x00,0x00,0x80,0x80,0x80,0x00,0x01,0x0E,0x30,0x08,0x06,0x01,0x00, // v 86
  0x80,0x80,0x00,0x80,0x00,0x80,0x80,0x80,0x0F,0x30,0x0C,0x03,0x0C,0x30,0x0F,0x00, // w 87
  0x00,0x80,0x80,0x00,0x80,0x80,0x80,0x00,0x00,0x20,0x31,0x2E,0x0E,0x31,0x20,0x00, // x 88
  0x80,0x80,0x80,0x00,0x00,0x80,0x80,0x80,0x80,0x81,0x8E,0x70,0x18,0x06,0x01,0x00, // y 89
  0x00,0x80,0x80,0x80,0x80,0x80,0x80,0x00,0x00,0x21,0x30,0x2C,0x22,0x21,0x30,0x00, // z 90
  0x00,0x00,0x00,0x00,0x80,0x7C,0x02,0x02,0x00,0x00,0x00,0x00,0x00,0x3F,0x40,0x40, // { 91
  0x00,0x00,0x00,0x00,0xFF,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xFF,0x00,0x00,0x00, // | 92
  0x00,0x02,0x02,0x7C,0x80,0x00,0x00,0x00,0x00,0x40,0x40,0x3F,0x00,0x00,0x00,0x00, // } 93
  0x00,0x06,0x01,0x01,0x02,0x02,0x04,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // ~ 94
};

// ----------------------------------------------------------------------------

Credits

John Bradnam

John Bradnam

144 projects • 173 followers
Thanks to Mirko Pavleski.

Comments