Holden StanleyBrendan SpencerMason Beard
Published

MEGR 3171 IoT Project 5 Average Temperature Calculator

Two Photons are recording temperature in different areas and the main Photon will display the average temperature.

IntermediateFull instructions provided3 hours610
MEGR 3171 IoT Project 5 Average Temperature Calculator

Things used in this project

Hardware components

Photon
Particle Photon
×3
Particle Temperature Sensor - Sealed (1)
×2
Particle Serial OLED Screen,0.96"
×1
Resistor 10k ohm
Resistor 10k ohm
×2
SparkFun Jumper wires (generic)
×13
USB-A to Micro-USB Cable
USB-A to Micro-USB Cable
×3
Perma-Proto Breadboard Half Size
Perma-Proto Breadboard Half Size
×4

Software apps and online services

Maker service
IFTTT Maker service
Google Sheets
Google Sheets

Story

Read more

Code

1st photon recording temperature

C/C++
// This #include statement was automatically added by the Particle IDE.
#include <OneWire.h>

OneWire ds = OneWire(D4);  // 1-wire signal on pin D4

//This code allows for a photon to take the temperature and then publish the data to the cloud as an event. This photon also subscribed to an Average event; this event is coming from the third photon. 
//Everytime the average temperature is displayed on the OLED, D7 will light up. (This completes the bi-directional communication)

unsigned long lastUpdate = 0;

float lastTemp;

void setup() {
  Serial.begin(9600);
  // Set up 'power' pins, comment out if not used!
  pinMode(D3, OUTPUT);
  pinMode(D5, OUTPUT);
  pinMode(D7, OUTPUT);
  digitalWrite(D3, LOW);
  digitalWrite(D5, HIGH);
  digitalWrite(D7, LOW);
  
  Particle.subscribe("Average1", recordAverage, "1d002d001247343438323536");        //Subscribe to the Average event being published by the third photon
}

        void recordAverage(const char *Average1, const char *data3){
            
            digitalWrite(D7, HIGH);     //Tell the photon to flash D7 on high when the Average event is published
            
            delay(1000);        //Delay the response
            
            digitalWrite(D7, LOW);          //After D7 has flashed turn it off
        }
  
  

void loop(void) {
  byte i;
  byte present = 0;
  byte type_s;
  byte data[12];
  byte addr[8];
  float celsius, fahrenheit;

  if ( !ds.search(addr)) {
    Serial.println("No more addresses.");
    Serial.println();
    ds.reset_search();
    delay(250);
    return;
  }

  // The order is changed a bit in this example
  // first the returned address is printed

  Serial.print("ROM =");
  for( i = 0; i < 8; i++) {
    Serial.write(' ');
    Serial.print(addr[i], HEX);
  }

  // second the CRC is checked, on fail,
  // print error and just return to try again

  if (OneWire::crc8(addr, 7) != addr[7]) {
      Serial.println("CRC is not valid!");
      return;
  }
  Serial.println();

  // we have a good address at this point
  // what kind of chip do we have?
  // we will set a type_s value for known types or just return

  // the first ROM byte indicates which chip
  switch (addr[0]) {
    case 0x10:
      Serial.println("  Chip = DS1820/DS18S20");
      type_s = 1;
      break;
    case 0x28:
      Serial.println("  Chip = DS18B20");
      type_s = 0;
      break;
    case 0x22:
      Serial.println("  Chip = DS1822");
      type_s = 0;
      break;
    case 0x26:
      Serial.println("  Chip = DS2438");
      type_s = 2;
      break;
    default:
      Serial.println("Unknown device type.");
      return;
  }

  // this device has temp so let's read it

  ds.reset();               // first clear the 1-wire bus
  ds.select(addr);          // now select the device we just found
  // ds.write(0x44, 1);     // tell it to start a conversion, with parasite power on at the end
  ds.write(0x44, 0);        // or start conversion in powered mode (bus finishes low)

  // just wait a second while the conversion takes place
  // different chips have different conversion times, check the specs, 1 sec is worse case + 250ms
  // you could also communicate with other devices if you like but you would need
  // to already know their address to select them.

  delay(1000);     // maybe 750ms is enough, maybe not, wait 1 sec for conversion

  // we might do a ds.depower() (parasite) here, but the reset will take care of it.

  // first make sure current values are in the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xB8,0);         // Recall Memory 0
  ds.write(0x00,0);         // Recall Memory 0

  // now read the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xBE,0);         // Read Scratchpad
  if (type_s == 2) {
    ds.write(0x00,0);       // The DS2438 needs a page# to read
  }

  // transfer and print the values

  Serial.print("  Data = ");
  Serial.print(present, HEX);
  Serial.print(" ");
  for ( i = 0; i < 9; i++) {           // we need 9 bytes
    data[i] = ds.read();
    Serial.print(data[i], HEX);
    Serial.print(" ");
  }
  Serial.print(" CRC=");
  Serial.print(OneWire::crc8(data, 8), HEX);
  Serial.println();

  // Convert the data to actual temperature
  // because the result is a 16 bit signed integer, it should
  // be stored to an "int16_t" type, which is always 16 bits
  // even when compiled on a 32 bit processor.
  int16_t raw = (data[1] << 8) | data[0];
  if (type_s == 2) raw = (data[2] << 8) | data[1];
  byte cfg = (data[4] & 0x60);

  switch (type_s) {
    case 1:
      raw = raw << 3; // 9 bit resolution default
      if (data[7] == 0x10) {
        // "count remain" gives full 12 bit resolution
        raw = (raw & 0xFFF0) + 12 - data[6];
      }
      celsius = (float)raw * 0.0625;
      break;
    case 0:
      // at lower res, the low bits are undefined, so let's zero them
      if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms
      if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
      if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
      // default is 12 bit resolution, 750 ms conversion time
      celsius = (float)raw * 0.0625;
      break;

    case 2:
      data[1] = (data[1] >> 3) & 0x1f;
      if (data[2] > 127) {
        celsius = (float)data[2] - ((float)data[1] * .03125);
      }else{
        celsius = (float)data[2] + ((float)data[1] * .03125);
      }
  }

  // remove random errors
  if((((celsius <= 0 && celsius > -1) && lastTemp > 5)) || celsius > 125) {
      celsius = lastTemp;
  }

  fahrenheit = celsius * 1.8 + 32.0;
  lastTemp = celsius;
  Serial.print("  Temperature = ");
  Serial.print(celsius);
  Serial.print(" Celsius, ");
  Serial.print(fahrenheit);
  Serial.println(" Fahrenheit");

  // now that we have the readings, we can publish them to the cloud
  String temperature = String(fahrenheit); // store temp in "temperature" string
  Particle.publish("temperature1", temperature); // publish to cloud
  delay(10000); // 10 second delay
  
      
  
}

2nd Photon recording temperature

C/C++
// This #include statement was automatically added by the Particle IDE.
#include <OneWire.h>

// This #include statement was automatically added by the Particle IDE.
#include <OneWire.h>

//This code allows for a photon to take the temperature and then publish the data to the cloud as an event. This photon also subscribed to an Average event; this event is coming from the third photon. 
//Everytime the average temperature is displayed on the OLED, D7 will light up. (This completes the bi-directional communication)


OneWire ds = OneWire(D4);  // 1-wire signal on pin D4

unsigned long lastUpdate = 0;

float lastTemp;

void setup() {
  Serial.begin(9600);
  // Set up 'power' pins, comment out if not used!
  pinMode(D3, OUTPUT);
  pinMode(D5, OUTPUT);
  pinMode(D7, OUTPUT);
  digitalWrite(D3, LOW);
  digitalWrite(D5, HIGH);
  digitalWrite(D7, LOW);
  
  Particle.subscribe("Average1", recordAverage, "1d002d001247343438323536");    //Subscribe to the Average event being published by the third photon
}

        void recordAverage(const char *Average1, const char *data3){
            
            digitalWrite(D7, HIGH);     //Tell the photon to flash D7 on high when the Average event is published
            
            delay(1000);        
            
            digitalWrite(D7, LOW);       //After D7 has flashed turn it off
        }
  
  
// up to here, it is the same as the address acanner
// we need a few more variables for this example

void loop(void) {
  byte i;
  byte present = 0;
  byte type_s;
  byte data[12];
  byte addr[8];
  float celsius, fahrenheit;

  if ( !ds.search(addr)) {
    Serial.println("No more addresses.");
    Serial.println();
    ds.reset_search();
    delay(250);
    return;
  }

  // The order is changed a bit in this example
  // first the returned address is printed

  Serial.print("ROM =");
  for( i = 0; i < 8; i++) {
    Serial.write(' ');
    Serial.print(addr[i], HEX);
  }

  // second the CRC is checked, on fail,
  // print error and just return to try again

  if (OneWire::crc8(addr, 7) != addr[7]) {
      Serial.println("CRC is not valid!");
      return;
  }
  Serial.println();

  // we have a good address at this point
  // what kind of chip do we have?
  // we will set a type_s value for known types or just return

  // the first ROM byte indicates which chip
  switch (addr[0]) {
    case 0x10:
      Serial.println("  Chip = DS1820/DS18S20");
      type_s = 1;
      break;
    case 0x28:
      Serial.println("  Chip = DS18B20");
      type_s = 0;
      break;
    case 0x22:
      Serial.println("  Chip = DS1822");
      type_s = 0;
      break;
    case 0x26:
      Serial.println("  Chip = DS2438");
      type_s = 2;
      break;
    default:
      Serial.println("Unknown device type.");
      return;
  }

  // this device has temp so let's read it

  ds.reset();               // first clear the 1-wire bus
  ds.select(addr);          // now select the device we just found
  // ds.write(0x44, 1);     // tell it to start a conversion, with parasite power on at the end
  ds.write(0x44, 0);        // or start conversion in powered mode (bus finishes low)

  // just wait a second while the conversion takes place
  // different chips have different conversion times, check the specs, 1 sec is worse case + 250ms
  // you could also communicate with other devices if you like but you would need
  // to already know their address to select them.

  delay(1000);     // maybe 750ms is enough, maybe not, wait 1 sec for conversion

  // we might do a ds.depower() (parasite) here, but the reset will take care of it.

  // first make sure current values are in the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xB8,0);         // Recall Memory 0
  ds.write(0x00,0);         // Recall Memory 0

  // now read the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xBE,0);         // Read Scratchpad
  if (type_s == 2) {
    ds.write(0x00,0);       // The DS2438 needs a page# to read
  }

  // transfer and print the values

  Serial.print("  Data = ");
  Serial.print(present, HEX);
  Serial.print(" ");
  for ( i = 0; i < 9; i++) {           // we need 9 bytes
    data[i] = ds.read();
    Serial.print(data[i], HEX);
    Serial.print(" ");
  }
  Serial.print(" CRC=");
  Serial.print(OneWire::crc8(data, 8), HEX);
  Serial.println();

  // Convert the data to actual temperature
  // because the result is a 16 bit signed integer, it should
  // be stored to an "int16_t" type, which is always 16 bits
  // even when compiled on a 32 bit processor.
  int16_t raw = (data[1] << 8) | data[0];
  if (type_s == 2) raw = (data[2] << 8) | data[1];
  byte cfg = (data[4] & 0x60);

  switch (type_s) {
    case 1:
      raw = raw << 3; // 9 bit resolution default
      if (data[7] == 0x10) {
        // "count remain" gives full 12 bit resolution
        raw = (raw & 0xFFF0) + 12 - data[6];
      }
      celsius = (float)raw * 0.0625;
      break;
    case 0:
      // at lower res, the low bits are undefined, so let's zero them
      if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms
      if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
      if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
      // default is 12 bit resolution, 750 ms conversion time
      celsius = (float)raw * 0.0625;
      break;

    case 2:
      data[1] = (data[1] >> 3) & 0x1f;
      if (data[2] > 127) {
        celsius = (float)data[2] - ((float)data[1] * .03125);
      }else{
        celsius = (float)data[2] + ((float)data[1] * .03125);
      }
  }

  // remove random errors
  if((((celsius <= 0 && celsius > -1) && lastTemp > 5)) || celsius > 125) {
      celsius = lastTemp;
  }

  fahrenheit = celsius * 1.8 + 32.0;
  lastTemp = celsius;
  Serial.print("  Temperature = ");
  Serial.print(celsius);
  Serial.print(" Celsius, ");
  Serial.print(fahrenheit);
  Serial.println(" Fahrenheit");

   // now that we have the readings, we can publish them to the cloud
  String temperature = String(fahrenheit); // store temp in "temperature" string
  Particle.publish("temperature2", temperature); // publish to cloud
  delay(10000); // 10 second delay
}

3rd photon taking the average of the two recorded temperatures

C/C++
// This #include statement was automatically added by the Particle IDE.
#include <Adafruit_SSD1306.h>




#define OLED_DC     D3
#define OLED_CS     D4
#define OLED_RESET  D5

static Adafruit_SSD1306 display(OLED_DC, OLED_RESET, OLED_CS);



//This code allows for one photon to subscirbe to two events of temperature data. The data is then combined by taking the average and displayed on an OLED screen. 
//When the average is taken an event is also published so that the other two photons can flash D7 letting us know that the average temperature was taken.



char temp[9];

float Avg=0;    //Make floating so that we can use it to do calculations below

float Temp1=0;  //Make floating so that we can use it to do calculations below

float Temp2=0;  //Make floating so that we can use it to do calculations below

void setup() {

Particle.subscribe("temperature2", recordtemp2, "2e003f000c47343438323536");    //Subscribing to the second photon recording the temp.


Particle.subscribe("temperature1", recordtemp1, "27002a000b47363330353437");    //Subscribing to the first photon recording the temp.



display.begin(SSD1306_SWITCHCAPVCC);

display.clearDisplay();

display.display();

}


void recordtemp1(const char *temperature1, const char *data1) //void is a function command
{
    
Temp1 = atof(data1);     //Convert the character data coming in to string data and assign the string data to the floating variable Temp1   

}

void recordtemp2(const char *temperature2, const char *data2) 
{
    
Temp2 = atof(data2);

Avg=((Temp1+Temp2)/2);      //Take the average of the incoming temperature data

display.clearDisplay();

display.setTextColor(WHITE);

display.setTextSize(2);

display.setCursor(0,0);

display.println("Avg.");

display.println("Temp. *F:");

display.println(Avg);   //Display the average temperature on the OLED

display.display();

String Average = String(Avg);       // store temp in "temperature" string
Particle.publish("Average1", Average);      //Publish the Average temperature calculated for the other two photons to subscribe to

delay(10000);

display.clearDisplay();

}

Credits

Holden Stanley

Holden Stanley

1 project • 2 followers
Brendan Spencer

Brendan Spencer

1 project • 2 followers
Mason Beard

Mason Beard

1 project • 0 followers

Comments