David JessickMichael Mason
Published

The Temperature Tester

This project is for the Spring 2018 MEGR 3171 Class. It uses Particle Photons to measure the temperature in two separate rooms.

BeginnerFull instructions provided2 hours786
The Temperature Tester

Things used in this project

Hardware components

Photon
Particle Photon
×2
Resistor 4.75k ohm
Resistor 4.75k ohm
×2
Temperature Sensor
Temperature Sensor
×1
Jumper wires (generic)
Jumper wires (generic)
×6
Breadboard (generic)
Breadboard (generic)
×2
SparkFun Temperature Sensor - Waterproof (DS18B20)
×1

Story

Read more

Schematics

Wiring Schematic (Same for Both)

Resistor used was a 4.7k Ohm. When wiring the sealed resistor wire red to power, yellow to d4 and black to ground.

Code

Temperature Sensor 1

C/C++
/************************************************************************
This sketch reads the temperature from a 1-Wire device and then publishes
to the Particle cloud. From there, IFTTT can be used to log the date,
time, and temperature to a Google Spreadsheet. Read more in our tutorial
here: https://docs.particle.io/tutorials/topics/maker-kit

This sketch is the same as the example from the OneWire library, but
with the addition of three lines at the end to publish the data to the
cloud.

Use this sketch to read the temperature from 1-Wire devices
you have attached to your Particle device (core, p0, p1, photon, electron)

Temperature is read from: DS18S20, DS18B20, DS1822, DS2438

Expanding on the enumeration process in the address scanner, this example
reads the temperature and outputs it from known device types as it scans.

I/O setup:
These made it easy to just 'plug in' my 18B20 (note that a bare TO-92
sensor may read higher than it should if it's right next to the Photon)

D3 - 1-wire ground, or just use regular pin and comment out below.
D4 - 1-wire signal, 2K-10K resistor to D5 (3v3)
D5 - 1-wire power, ditto ground comment.

A pull-up resistor is required on the signal line. The spec calls for a 4.7K.
I have used 1K-10K depending on the bus configuration and what I had out on the
bench. If you are powering the device, they all work. If you are using parisidic
power it gets more picky about the value.
************************************************************************/

// This #include statement was automatically added by the Particle IDE.
#include <OneWire.h>
OneWire ds = OneWire(D4);  // 1-wire signal on pin D4

unsigned long lastUpdate = 0;
int led = D7;//sets pin to light led
float lastTemp;
void setup() {
Particle.subscribe("zip", n,"3f0051001051353338363333");//subscribes to the other room photon
  Serial.begin(9600);
  // Set up 'power' pins, comment out if not used!
  pinMode(D3, OUTPUT);
  pinMode(D5, OUTPUT);
  digitalWrite(D3, LOW);
  digitalWrite(D5, HIGH);
  pinMode(led, OUTPUT);
  digitalWrite(led,LOW);
}

// up to here, it is the same as the address acanner
// we need a few more variables for this example

void loop(void) {
  byte i;
  byte present = 0;
  byte type_s;
  byte data[12];
  byte addr[8];
  float celsius, fahrenheit;


  if ( !ds.search(addr)) {
    Serial.println("No more addresses.");
    Serial.println();
    ds.reset_search();
    delay(250);
    return;
  }

  // The order is changed a bit in this example
  // first the returned address is printed

  Serial.print("ROM =");
  for( i = 0; i < 8; i++) {
    Serial.write(' ');
    Serial.print(addr[i], HEX);
  }

  // second the CRC is checked, on fail,
  // print error and just return to try again

  if (OneWire::crc8(addr, 7) != addr[7]) {
      Serial.println("CRC is not valid!");
      return;
  }
  Serial.println();

  // we have a good address at this point
  // what kind of chip do we have?
  // we will set a type_s value for known types or just return

  // the first ROM byte indicates which chip
  switch (addr[0]) {
    case 0x10:
      Serial.println("  Chip = DS1820/DS18S20");
      type_s = 1;
      break;
    case 0x28:
      Serial.println("  Chip = DS18B20");
      type_s = 0;
      break;
    case 0x22:
      Serial.println("  Chip = DS1822");
      type_s = 0;
      break;
    case 0x26:
      Serial.println("  Chip = DS2438");
      type_s = 2;
      break;
    default:
      Serial.println("Unknown device type.");
      return;
  }


  // this device has temp so let's read it

  ds.reset();               // first clear the 1-wire bus
  ds.select(addr);          // now select the device we just found
  // ds.write(0x44, 1);     // tell it to start a conversion, with parasite power on at the end
  ds.write(0x44, 0);        // or start conversion in powered mode (bus finishes low)

  // just wait a second while the conversion takes place
  // different chips have different conversion times, check the specs, 1 sec is worse case + 250ms
  // you could also communicate with other devices if you like but you would need
  // to already know their address to select them.

  delay(1000);     // maybe 750ms is enough, maybe not, wait 1 sec for conversion

  // we might do a ds.depower() (parasite) here, but the reset will take care of it.

  // first make sure current values are in the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xB8,0);         // Recall Memory 0
  ds.write(0x00,0);         // Recall Memory 0

  // now read the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xBE,0);         // Read Scratchpad
  if (type_s == 2) {
    ds.write(0x00,0);       // The DS2438 needs a page# to read
  }

  // transfer and print the values

  Serial.print("  Data = ");
  Serial.print(present, HEX);
  Serial.print(" ");
  for ( i = 0; i < 9; i++) {           // we need 9 bytes
    data[i] = ds.read();
    Serial.print(data[i], HEX);
    Serial.print(" ");
  }
  Serial.print(" CRC=");
  Serial.print(OneWire::crc8(data, 8), HEX);
  Serial.println();

  // Convert the data to actual temperature
  // because the result is a 16 bit signed integer, it should
  // be stored to an "int16_t" type, which is always 16 bits
  // even when compiled on a 32 bit processor.
  int16_t raw = (data[1] << 8) | data[0];
  if (type_s == 2) raw = (data[2] << 8) | data[1];
  byte cfg = (data[4] & 0x60);

  switch (type_s) {
    case 1:
      raw = raw << 3; // 9 bit resolution default
      if (data[7] == 0x10) {
        // "count remain" gives full 12 bit resolution
        raw = (raw & 0xFFF0) + 12 - data[6];
      }
      celsius = (float)raw * 0.0625;
      break;
    case 0:
      // at lower res, the low bits are undefined, so let's zero them
      if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms
      if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
      if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
      // default is 12 bit resolution, 750 ms conversion time
      celsius = (float)raw * 0.0625;
      break;

    case 2:
      data[1] = (data[1] >> 3) & 0x1f;
      if (data[2] > 127) {
        celsius = (float)data[2] - ((float)data[1] * .03125);
      }else{
        celsius = (float)data[2] + ((float)data[1] * .03125);
      }
  }

  // remove random errors
  if((((celsius <= 0 && celsius > -1) && lastTemp > 5)) || celsius > 125) {
      celsius = lastTemp;
  }

  fahrenheit = celsius * 1.8 + 32.0;
  lastTemp = celsius;
  Serial.print("  Temperature = ");
  Serial.print(celsius);
  Serial.print(" Celsius, ");
  Serial.print(fahrenheit);
  Serial.println(" Fahrenheit");

  // now that we have the readings, we can publish them to the cloud
  String djroomtemp = String(fahrenheit); // store temp in "temperature" string
  Particle.publish("djroomtemp", djroomtemp, PUBLIC);//publishing the temperature data
  
  delay(60000); // 1 min delay
}
void n(const char *event, const char *data){//runs a programmed based off the subscribe function. Everytime the other photon publishes data the d7 led illumnates
    // We'll turn the LED on
    digitalWrite(led, HIGH);
    
    // We'll leave it on for 1 second...
    delay(1000);
    
    // Then we'll turn it off...
    digitalWrite(led, LOW);
}

Temperature Sensor 2

C/C++
// This #include statement was automatically added by the Particle IDE.
#include <OneWire.h>
/************************************************************************
This sketch reads the temperature from a 1-Wire device and then publishes
to the Particle cloud. From there, IFTTT can be used to log the date,
time, and temperature to a Google Spreadsheet. Read more in our tutorial
here: https://docs.particle.io/tutorials/topics/maker-kit

This sketch is the same as the example from the OneWire library, but
with the addition of three lines at the end to publish the data to the
cloud.

Use this sketch to read the temperature from 1-Wire devices
you have attached to your Particle device (core, p0, p1, photon, electron)

Temperature is read from: DS18S20, DS18B20, DS1822, DS2438

Expanding on the enumeration process in the address scanner, this example
reads the temperature and outputs it from known device types as it scans.

I/O setup:
These made it easy to just 'plug in' my 18B20 (note that a bare TO-92
sensor may read higher than it should if it's right next to the Photon)

D3 - 1-wire ground, or just use regular pin and comment out below.
D4 - 1-wire signal, 2K-10K resistor to D5 (3v3)
D5 - 1-wire power, ditto ground comment.

A pull-up resistor is required on the signal line. The spec calls for a 4.7K.
I have used 1K-10K depending on the bus configuration and what I had out on the
bench. If you are powering the device, they all work. If you are using parisidic
power it gets more picky about the value.
************************************************************************/

OneWire ds = OneWire(D4);  // 1-wire signal on pin D4

unsigned long lastUpdate = 0;

float lastTemp;

int led = D7;
void setup() {
  Serial.begin(9600);
  // Set up 'power' pins, comment out if not used!
  pinMode(D3, OUTPUT);
  pinMode(D5, OUTPUT);
  digitalWrite(D3, LOW);
  digitalWrite(D5, HIGH);
    pinMode(led, OUTPUT);
  digitalWrite(led,LOW);
 Particle.subscribe("djroomtemp",d,"220021000d47343438323536");
}

// up to here, it is the same as the address acanner
// we need a few more variables for this example

void loop(void) {
  byte i;
  byte present = 0;
  byte type_s;
  byte data[12];
  byte addr[8];
  float celsius, fahrenheit;

  if ( !ds.search(addr)) {
    Serial.println("No more addresses.");
    Serial.println();
    ds.reset_search();
    delay(250);
    return;
  }

  // The order is changed a bit in this example
  // first the returned address is printed

  Serial.print("ROM =");
  for( i = 0; i < 8; i++) {
    Serial.write(' ');
    Serial.print(addr[i], HEX);
  }

  // second the CRC is checked, on fail,
  // print error and just return to try again

  if (OneWire::crc8(addr, 7) != addr[7]) {
      Serial.println("CRC is not valid!");
      return;
  }
  Serial.println();

  // we have a good address at this point
  // what kind of chip do we have?
  // we will set a type_s value for known types or just return

  // the first ROM byte indicates which chip
  switch (addr[0]) {
    case 0x10:
      Serial.println("  Chip = DS1820/DS18S20");
      type_s = 1;
      break;
    case 0x28:
      Serial.println("  Chip = DS18B20");
      type_s = 0;
      break;
    case 0x22:
      Serial.println("  Chip = DS1822");
      type_s = 0;
      break;
    case 0x26:
      Serial.println("  Chip = DS2438");
      type_s = 2;
      break;
    default:
      Serial.println("Unknown device type.");
      return;
  }

  // this device has temp so let's read it

  ds.reset();               // first clear the 1-wire bus
  ds.select(addr);          // now select the device we just found
  // ds.write(0x44, 1);     // tell it to start a conversion, with parasite power on at the end
  ds.write(0x44, 0);        // or start conversion in powered mode (bus finishes low)

  // just wait a second while the conversion takes place
  // different chips have different conversion times, check the specs, 1 sec is worse case + 250ms
  // you could also communicate with other devices if you like but you would need
  // to already know their address to select them.

  delay(1000);     // maybe 750ms is enough, maybe not, wait 1 sec for conversion

  // we might do a ds.depower() (parasite) here, but the reset will take care of it.

  // first make sure current values are in the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xB8,0);         // Recall Memory 0
  ds.write(0x00,0);         // Recall Memory 0

  // now read the scratch pad

  present = ds.reset();
  ds.select(addr);
  ds.write(0xBE,0);         // Read Scratchpad
  if (type_s == 2) {
    ds.write(0x00,0);       // The DS2438 needs a page# to read
  }

  // transfer and print the values

  Serial.print("  Data = ");
  Serial.print(present, HEX);
  Serial.print(" ");
  for ( i = 0; i < 9; i++) {           // we need 9 bytes
    data[i] = ds.read();
    Serial.print(data[i], HEX);
    Serial.print(" ");
  }
  Serial.print(" CRC=");
  Serial.print(OneWire::crc8(data, 8), HEX);
  Serial.println();

  // Convert the data to actual temperature
  // because the result is a 16 bit signed integer, it should
  // be stored to an "int16_t" type, which is always 16 bits
  // even when compiled on a 32 bit processor.
  int16_t raw = (data[1] << 8) | data[0];
  if (type_s == 2) raw = (data[2] << 8) | data[1];
  byte cfg = (data[4] & 0x60);

  switch (type_s) {
    case 1:
      raw = raw << 3; // 9 bit resolution default
      if (data[7] == 0x10) {
        // "count remain" gives full 12 bit resolution
        raw = (raw & 0xFFF0) + 12 - data[6];
      }
      celsius = (float)raw * 0.0625;
      break;
    case 0:
      // at lower res, the low bits are undefined, so let's zero them
      if (cfg == 0x00) raw = raw & ~7;  // 9 bit resolution, 93.75 ms
      if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
      if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
      // default is 12 bit resolution, 750 ms conversion time
      celsius = (float)raw * 0.0625;
      break;

    case 2:
      data[1] = (data[1] >> 3) & 0x1f;
      if (data[2] > 127) {
        celsius = (float)data[2] - ((float)data[1] * .03125);
      }else{
        celsius = (float)data[2] + ((float)data[1] * .03125);
      }
  }

  // remove random errors
  if((((celsius <= 0 && celsius > -1) && lastTemp > 5)) || celsius > 125) {
      celsius = lastTemp;
  }

  fahrenheit = celsius * 1.8 + 32.0;
  lastTemp = celsius;
  Serial.print("  Temperature = ");
  Serial.print(celsius);
  Serial.print(" Celsius, ");
  Serial.print(fahrenheit);
  Serial.println(" Fahrenheit");

  // now that we have the readings, we can publish them to the cloud
  String zip = String(fahrenheit); // store temp in "zip" string
  Particle.publish("zip", zip, PUBLIC); // publish to cloud

  delay(60000); // 1 min delay
}
void d(const char *event, const char *data){
    // We'll turn the LED on
    digitalWrite(led, HIGH);
    
    // We'll leave it on for 1 second...
    delay(1000);
    
    // Then we'll turn it off...
    digitalWrite(led, LOW);
}

Credits

David Jessick

David Jessick

1 project • 1 follower
Michael Mason

Michael Mason

1 project • 1 follower

Comments