#include "arduinoFFT.h"
#define SAMPLES 128 //Must be a power of 2 // 2^7
#define SAMPLING_FREQUENCY 1000 //Hz, must be less than 10000 due to ADC
arduinoFFT FFT = arduinoFFT();
unsigned int sampling_period_us;
unsigned long microseconds;
double vReal[SAMPLES];
double vImag[SAMPLES];
int ledPin = 13; // select the pin for the LED
int ledPinGND = 8; // select the pin for the LED
int ledPinG = 9; // select the pin for the LED
int ledPinR = 10; // select the pin for the LED
int ledPinB = 11; // select the pin for the LED
float tension = 0;
int pompe = 3;
void setup() {
Serial.begin(115200);
sampling_period_us = round(1000000*(1.0/SAMPLING_FREQUENCY));
// declare the ledPin as an OUTPUT:
pinMode(ledPin, OUTPUT);
pinMode(ledPinR, OUTPUT);
pinMode(ledPinG, OUTPUT);
pinMode(ledPinB, OUTPUT);
pinMode(ledPinGND, OUTPUT);
pinMode(pompe, OUTPUT);
}
void loop() {
digitalWrite(ledPinR, 0);
digitalWrite(ledPinG, 0);
digitalWrite(ledPinB, 0);
digitalWrite(ledPinGND, 0);
digitalWrite(pompe, 0);
/*SAMPLING*/
for(int i=0; i<SAMPLES; i++)
{
microseconds = micros(); //Overflows after around 70 minutes!
vReal[i] = analogRead(0);
vImag[i] = 0;
while(micros() < (microseconds + sampling_period_us)){
}
}
/*FFT*/
FFT.Windowing(vReal, SAMPLES, FFT_WIN_TYP_HAMMING, FFT_FORWARD);
FFT.Compute(vReal, vImag, SAMPLES, FFT_FORWARD);
FFT.ComplexToMagnitude(vReal, vImag, SAMPLES);
double peak = FFT.MajorPeak(vReal, SAMPLES, SAMPLING_FREQUENCY);
/*PRINT RESULTS*/
//Serial.println(peak); //Print out what frequency is the most dominant.
for(int i=0; i<(SAMPLES/2); i++)
{
/*View all these three lines in serial terminal to see which frequencies has which amplitudes*/
if (vReal[i] > 5)
{
delay(100); // delay in between reads for stability
digitalWrite(pompe, 1);
digitalWrite(ledPinR, 1);
digitalWrite(ledPinG, 0); // define a colors
digitalWrite(ledPinB, 0);
delay(500); // delay to change to improve the water jet
digitalWrite(ledPinR, 0);
digitalWrite(ledPinG, 0);
digitalWrite(ledPinB, 0);
digitalWrite(pompe, 0);
}
if (vReal[i] > 15)
{
delay(100); // delay in between reads for stability
digitalWrite(pompe, 1);
digitalWrite(ledPinR, 0);
digitalWrite(ledPinG, 1); // define a colors
digitalWrite(ledPinB, 0);
delay(300); // delay to change to improve the water jet
digitalWrite(ledPinR, 0);
digitalWrite(ledPinG, 0);
digitalWrite(ledPinB, 0);
digitalWrite(pompe, 0);
}
if (vReal[i] > 20)
{
delay(100); // delay in between reads for stability
digitalWrite(pompe, 1);
digitalWrite(ledPinR, 0);
digitalWrite(ledPinG, 0); // define a colors
digitalWrite(ledPinB, 1);
delay(150); // delay to change to improve the water jet
digitalWrite(ledPinR, 0);
digitalWrite(ledPinG, 0);
digitalWrite(ledPinB, 0);
digitalWrite(pompe, 0);
}
//Serial.print((i * 1.0 * SAMPLING_FREQUENCY) / SAMPLES, 1);
//Serial.print(" ");
Serial.println(vReal[i], 1); //View only this line in serial plotter to visualize the bins
}
//delay(1000); //Repeat the process every second OR:
// while(1); //Run code once
}
Comments