James Martel
Published © GPL3+

AdaFruit Feather HUZZAH/32u4 Bluefruit Tracked Vehicle

So I didn't get the AdaBox002 but I have all the hardware. So now what? What am I gonna build? Another tracked robot.

IntermediateShowcase (no instructions)2 hours1,428
AdaFruit Feather HUZZAH/32u4 Bluefruit Tracked Vehicle

Things used in this project

Hardware components

Adafruit Feather HUZZAH with ESP8266 WiFi
Adafruit Feather HUZZAH with ESP8266 WiFi
×1
Adafruit Feather 32u4 Bluefruit
×1
Adafruit FeatherWing Doubler
×1
Adafruit Motor FeatherWing
×1
Adafruit Lithium Ion 3.7v battery
×1
18650 4000mAh 3.7v Li-ion Battery
×2
18650 Battery Holder
×1
Sainsmart Tracked Platform
×1
2.1mm Male/Female Barrel Jack
×1
24 awg hookup wire
×1
Electrical Tape
×1
Adafruit 6600 mAh Lithium Ion Battery
×1
Adafruit 4/3 AA Battery Holder with switch
×1
Adafruit 3 AA Battery Holder with Switch
×1

Software apps and online services

Adafruit BLE Robot platform Documentation
Adafruit FeatherWing Doubler documentation
Adafruit Feather 32u4 Bluefruit documentation
Adafruit Feather HUZZAH with ESP8266 Documentation
Adafruit BLE Connect Application
Adafruit ADABOX002 Documentation

Hand tools and fabrication machines

philips screwdriver
Wire stripper/cutters tool
Soldering iron (generic)
Soldering iron (generic)
solder

Story

Read more

Code

PC Control libraries

C/C++
aRest code
/*
  aREST Library for Arduino
  See the README file for more details.

  Written in 2014 by Marco Schwartz.

  This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License:
  http://creativecommons.org/licenses/by-sa/4.0/

  Version 2.4.2
  Changelog:

  Version 2.4.2: Added publish() support for MKR1000
  Version 2.4.1: Additional fixes for Pro plans
  Version 2.4.0: Added support for aREST Pro & several fixes
  Version 2.3.1: Fixed pin mapping for NodeMCU/Wemos boards
  Version 2.3.0: Implement required changes for the cloud server upgrade
  Version 2.2.1: Added compatibility with the WINC1500 chip
  Version 2.2.0: Added compatibility with the Arduino MKR1000 board
  Version 2.1.2: Added data about hardware type in JSON answer
  Version 2.1.1: Fixed analogWrite() for ESP8266 chips
  Version 2.1.0: Added publish() function
  Version 2.0.2: Able to change MQTT remote server
  Version 2.0.2: Added cloud access support for the Ethernet library
  Version 2.0.1: Added beta support for cloud access via cloud.arest.io
  Version 2.0.0: Added beta support for MQTT communications
  Version 1.9.10: Added support for floats & Strings for Uno (without the CC3000 chip)
  Version 1.9.8: Added support for ESP8266 chip
  Version 1.9.7: Added support for Arduino 1.6.2
  Version 1.9.6: Added support for float variables for Arduino Mega
  Version 1.9.5: Added compatibility with Arduino IDE 1.5.8
  Version 1.9.4: Bug fixes & added support for configuring analog pints as digital outputs
  Version 1.9.3: Added description of available variables for the /id and / routes
  Version 1.9.2: Added compatibility with the Arduino WiFi library
  Version 1.9.1: Added compatibility with CORS
  Version 1.9: New speedup of the library (answers 2x faster in HTTP compared to version 1.8)
  Version 1.8: Speedup of the library (answers 2.5x faster with the CC3000 WiFi chip)
  Version 1.7.5: Reduced memory footprint of the library
  Version 1.7.4: Added a function to read all analog & digital inputs at once
  Version 1.7.3: Added LIGHTWEIGHT mode to only send limited data back
  Version 1.7.2: Added possibility to assign a status pin connected to a LED
  Version 1.7.1: Added possibility to change number of exposed variables & functions
  Version 1.7: Added compatibility with the Arduino Due & Teensy 3.x
  Version 1.6: Added compatibility with the Arduino Yun

  Version 1.5: Size reduction, and added compatibility with Adafruit BLE

  Version 1.4: Added authentification with API key

  Version 1.3: Added support for the Ethernet shield

  Version 1.2: Added support of Serial communications

  Version 1.1: Added variables & functions support

  Version 1.0: First working version of the library
*/

#ifndef aRest_h
#define aRest_h

// Include Arduino header
#include "Arduino.h"

// MQTT packet size
#undef MQTT_MAX_PACKET_SIZE
#define MQTT_MAX_PACKET_SIZE 512

// Using ESP8266 ?
#if defined(ESP8266)
#include "stdlib_noniso.h"
#endif

// Which board?
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(CORE_WILDFIRE) || defined(ESP8266)
#define NUMBER_ANALOG_PINS 16
#define NUMBER_DIGITAL_PINS 54
#define OUTPUT_BUFFER_SIZE 2000
#elif defined(__AVR_ATmega328P__) && !defined(ADAFRUIT_CC3000_H)
#define NUMBER_ANALOG_PINS 6
#define NUMBER_DIGITAL_PINS 14
#define OUTPUT_BUFFER_SIZE 350
#elif defined(ADAFRUIT_CC3000_H)
#define NUMBER_ANALOG_PINS 6
#define NUMBER_DIGITAL_PINS 14
#define OUTPUT_BUFFER_SIZE 275
#else
#define NUMBER_ANALOG_PINS 6
#define NUMBER_DIGITAL_PINS 14
#define OUTPUT_BUFFER_SIZE 350
#endif

// Hardware data
#if defined(ESP8266)
#define HARDWARE "esp8266"
#else
#define HARDWARE "arduino"
#endif

// Size of name & ID
#define NAME_SIZE 20
#define ID_SIZE 10

// Subscriptions
#define NUMBER_SUBSCRIPTIONS 4

// Debug mode
#ifndef DEBUG_MODE
#define DEBUG_MODE 0
#endif

// Use light answer mode
#ifndef LIGHTWEIGHT
#define LIGHTWEIGHT 0
#endif

// Default number of max. exposed variables
#ifndef NUMBER_VARIABLES
  #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(CORE_WILDFIRE) || defined(ESP8266) || !defined(ADAFRUIT_CC3000_H)
  #define NUMBER_VARIABLES 10
  #else
  #define NUMBER_VARIABLES 5
  #endif
#endif

// Default number of max. exposed functions
#ifndef NUMBER_FUNCTIONS
  #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(CORE_WILDFIRE) || defined(ESP8266)
  #define NUMBER_FUNCTIONS 10
  #else
  #define NUMBER_FUNCTIONS 5
  #endif
#endif

class aREST {

public:

aREST() {

  command = 'u';
  pin_selected = false;

  status_led_pin = 255;
  state = 'u';

}

aREST(char* rest_remote_server, int rest_port) {

  command = 'u';
  pin_selected = false;

  status_led_pin = 255;
  state = 'u';

  remote_server = rest_remote_server;
  port = rest_port;

}

#if defined(_ADAFRUIT_MQTT_FONA_H_)



#endif

#if defined(PubSubClient_h)

// With default server
aREST(PubSubClient& client) {

  command = 'u';
  pin_selected = false;

  status_led_pin = 255;
  state = 'u';

  private_mqtt_server = false;
  client.setServer(mqtt_server, 1883);

}

// With another server
aREST(PubSubClient& client, char* new_mqtt_server) {

  command = 'u';
  pin_selected = false;

  status_led_pin = 255;
  state = 'u';

  private_mqtt_server = true;
  setMQTTServer(new_mqtt_server);
  client.setServer(new_mqtt_server, 1883);

}

// Get topic
char* get_topic() {
  return out_topic;
}

// Subscribe to events
void subscribe(String device, String eventName) {

  // Build topic
  String topic = device + "_" + eventName + "_in";

  // Subscribe
  char charBuf[50];
  topic.toCharArray(charBuf, 50);

  subscriptions_names[subscriptions_index] = charBuf;
  subscriptions_index++;

}

// Publish to cloud
template <typename T>
void publish(PubSubClient& client, String eventName, T data) {

  // Get event data
  if (DEBUG_MODE) {
    Serial.print("Publishing event " + eventName + " with data: ");
    Serial.println(data);
  }

  // Build message
  String message = "{\"client_id\": \"" + String(id) + "\", \"event_name\": \"" + eventName + "\", \"data\": \"" + String(data) + "\"}";

  if (DEBUG_MODE) {
    Serial.print("Sending message via MQTT: ");
    Serial.println(message);
  }

  // Convert
  char charBuf[100];
  message.toCharArray(charBuf, 100);

  // Publish
  client.publish(publish_topic, charBuf);

}

void setKey(char* proKey, PubSubClient& client) {

  // Assign MQTT server
  mqtt_server = "104.131.78.157";
  client.setServer(mqtt_server, 1883);

  // Set key
  proKey = proKey;

  // Generate MQTT random ID
  String randomId;
  randomId = gen_random(6);

  // Assign ID
  strncpy(id, randomId.c_str(), ID_SIZE);

  // Build topics IDs
  String inTopic = randomId + String(proKey) + String("_in");
  String outTopic = randomId + String(proKey) + String("_out");

  strcpy(in_topic, inTopic.c_str());
  strcpy(out_topic, outTopic.c_str());

  // Build client ID
  String clientId = randomId + String(proKey);
  strcpy(client_id, clientId.c_str());

}

#endif

// Set status LED
void set_status_led(uint8_t pin){

  // Set variables
  status_led_pin = pin;

  // Set pin as output
  pinMode(status_led_pin,OUTPUT);
}

// Glow status LED
void glow_led() {

  if(status_led_pin != 255){
    unsigned long i = millis();
    int j = i % 4096;
    if (j > 2048) { j = 4096 - j;}
      analogWrite(status_led_pin,j/8);
    }
}

// Send HTTP headers for Ethernet & WiFi
void send_http_headers(){

  addToBuffer(F("HTTP/1.1 200 OK\r\nAccess-Control-Allow-Origin: *\r\nAccess-Control-Allow-Methods: POST, GET, PUT, OPTIONS\r\nContent-Type: application/json\r\nConnection: close\r\n\r\n"));

}

// Reset variables after a request
void reset_status() {

  if (DEBUG_MODE) {
    #if defined(ESP8266)
      Serial.print("Memory loss before reset:");
      Serial.println(freeMemory - ESP.getFreeHeap(),DEC);
      freeMemory = ESP.getFreeHeap();
    #endif
  }

  answer = "";
  command = 'u';
  pin_selected = false;
  state = 'u';
  arguments = "";

  index = 0;
  //memset(&buffer[0], 0, sizeof(buffer));

  if (DEBUG_MODE) {
    #if defined(ESP8266)
    Serial.print("Memory loss after reset:");
    Serial.println(freeMemory - ESP.getFreeHeap(),DEC);
    freeMemory = ESP.getFreeHeap();
    Serial.print("Memory free:");
    Serial.println(freeMemory, DEC);
    #endif
  }

}

// Handle request with the Adafruit CC3000 WiFi library
#ifdef ADAFRUIT_CC3000_H
void handle(Adafruit_CC3000_ClientRef& client) {

  if (client.available()) {

    // Handle request
    handle_proto(client,true,0);

    // Answer
    sendBuffer(client,32,20);
    client.stop();

    // Reset variables for the next command
    reset_status();

  }
}

template <typename T>
void publish(Adafruit_CC3000_ClientRef& client, String eventName, T value) {

  // Publish request
  publish_proto(client, eventName, value);

}

// Handle request with the Arduino Yun
#elif defined(_YUN_CLIENT_H_)
void handle(YunClient& client) {

  if (client.available()) {

    // Handle request
    handle_proto(client,false,0);

    // Answer
    sendBuffer(client,25,10);
    client.stop();

    // Reset variables for the next command
    reset_status();
  }
}

template <typename T>
void publish(YunClient& client, String eventName, T value) {

  // Publish request
  publish_proto(client, eventName, value);

}

// Handle request with the Adafruit BLE board
#elif defined(_ADAFRUIT_BLE_UART_H_)
void handle(Adafruit_BLE_UART& serial) {

  if (serial.available()) {

    // Handle request
    handle_proto(serial,false,0);

    // Answer
    sendBuffer(serial,100,1);

    // Reset variables for the next command
    reset_status();
  }
}

// template <typename T>
// void publish(Adafruit_BLE_UART& serial, String eventName, T value) {

//   // Publish request
//   publish_proto(client, eventName, value);

// }

// Handle request for the Arduino Ethernet shield
#elif defined(ethernet_h)
void handle(EthernetClient& client){

  if (client.available()) {

    // Handle request
    handle_proto(client,true,0);

    // Answer
    sendBuffer(client,50,0);
    client.stop();

    // Reset variables for the next command
    reset_status();
  }
}

template <typename T>
void publish(EthernetClient& client, String eventName, T value) {

  // Publish request
  publish_proto(client, eventName, value);

}

// Handle request for the Cytron Clone ESP8266
#elif defined(_CYTRONWIFISERVER_H_)
void handle(ESP8266Client& client){

  if (client.available()) {

    // Handle request
    handle_proto(client,true,0);

    // Answer
    sendBuffer(client,0,0);
    client.stop();

    // Reset variables for the next command
    reset_status();

  }
}

// Handle request for the ESP8266 chip
#elif defined(ESP8266)
void handle(WiFiClient& client){

  if (DEBUG_MODE) {
    Serial.print("Memory loss before available:");
    Serial.println(freeMemory - ESP.getFreeHeap(),DEC);
    freeMemory = ESP.getFreeHeap();
  }

  if (client.available()) {

    if (DEBUG_MODE) {
      Serial.print("Memory loss before handling:");
      Serial.println(freeMemory - ESP.getFreeHeap(),DEC);
      freeMemory = ESP.getFreeHeap();
    }

    // Handle request
    handle_proto(client,true,0);

    if (DEBUG_MODE) {
      Serial.print("Memory loss after handling:");
      Serial.println(freeMemory - ESP.getFreeHeap(),DEC);
      freeMemory = ESP.getFreeHeap();
    }

    // Answer
    sendBuffer(client,0,0);
    client.stop();

    // Reset variables for the next command
    reset_status();

  }
}

template <typename T>
void publish(WiFiClient& client, String eventName, T value) {

  // Publish request
  publish_proto(client, eventName, value);

}

// Handle request for the Arduino MKR1000 board
#elif defined(WIFI_H)
void handle(WiFiClient& client){

  if (client.available()) {

    if (DEBUG_MODE) {Serial.println("Request received");}

    // Handle request
    handle_proto(client,true,0);

    // Answer
    sendBuffer(client,0,0);
    client.stop();

    // Reset variables for the next command
    reset_status();
  }
}

template <typename T>
void publish(WiFiClient& client, String eventName, T value) {

  // Publish request
  publish_proto(client, eventName, value);

}

// Handle request for the Arduino WiFi shield
#elif defined(WiFi_h)
void handle(WiFiClient& client){

  if (client.available()) {

    if (DEBUG_MODE) {Serial.println("Request received");}

    // Handle request
    handle_proto(client,true,0);

    // Answer
    sendBuffer(client,50,1);
    client.stop();

    // Reset variables for the next command
    reset_status();
  }
}

template <typename T>
void publish(WiFiClient& client, String eventName, T value) {

  // Publish request
  publish_proto(client, eventName, value);

}

#elif defined(CORE_TEENSY)
// Handle request on the Serial port
void handle(usb_serial_class& serial){

  if (serial.available()) {

    // Handle request
    handle_proto(serial,false,1);

    // Answer
    sendBuffer(serial,25,1);

    // Reset variables for the next command
    reset_status();
  }
}

template <typename T>
void publish(usb_serial_class& client, String eventName, T value) {

  // Publish request
  publish_proto(client, eventName, value);

}

#elif defined(__AVR_ATmega32U4__)
// Handle request on the Serial port
void handle(Serial_& serial){

  if (serial.available()) {

    // Handle request
    handle_proto(serial,false,1);

    // Answer
    sendBuffer(serial,25,1);

    // Reset variables for the next command
    reset_status();
  }
}

template <typename T>
void publish(Serial_& client, String eventName, T value) {

  // Publish request
  publish_proto(client, eventName, value);

}

#else
// Handle request on the Serial port
void handle(HardwareSerial& serial){

  if (serial.available()) {

    // Handle request
    handle_proto(serial,false,1);

    // Answer
    sendBuffer(serial,25,1);

    // Reset variables for the next command
    reset_status();
  }
}

template <typename T>
void publish(HardwareSerial& client, String eventName, T value) {

  // Publish request
  publish_proto(client, eventName, value);

}
#endif

void handle(char * string) {

  // Process String
  handle_proto(string);

  // Reset variables for the next command
  reset_status();
}

void handle_proto(char * string) {
  // Check if there is data available to read
  for (int i = 0; i < strlen(string); i++){

    char c = string[i];
    answer = answer + c;

    // Process data
    process(c);

  }

  // Send command
  send_command(false);
}

template <typename T, typename V>
void publish_proto(T& client, String eventName, V value) {

  // Format data
  String data = "name=" + eventName + "&data=" + String(value);

  Serial.println("POST /" + String(id) + "/events HTTP/1.1");
  Serial.println("Host: " + String(remote_server) + ":" + String(port));
  Serial.println(F("Content-Type: application/x-www-form-urlencoded"));
  Serial.print(F("Content-Length: "));
  Serial.println(data.length());
  Serial.println();
  Serial.print(data);

  // Send request
  client.println(F("POST /1/events HTTP/1.1"));
  client.println("Host: " + String(remote_server) + ":" + String(port));
  client.println(F("Content-Type: application/x-www-form-urlencoded"));
  client.print(F("Content-Length: "));
  client.println(data.length());
  client.println();
  client.print(data);

}

template <typename T>
void handle_proto(T& serial, bool headers, uint8_t read_delay)
{

  // Check if there is data available to read
  while (serial.available()) {

    // Get the server answer
    char c = serial.read();
    delay(read_delay);
    answer = answer + c;
    //if (DEBUG_MODE) {Serial.print(c);}

    // Process data
    process(c);

   }

   // Send command
   send_command(headers);
}

#if defined(PubSubClient_h)

// Process callback
void handle_callback(PubSubClient& client, char* topic, byte* payload, unsigned int length) {

  // Process received message
  int i;
  char mqtt_msg[100];
  for(i = 0; i < length; i++) {
    mqtt_msg[i] = payload[i];
  }
  mqtt_msg[i] = '\0';
  String msgString = String(mqtt_msg);

  if (DEBUG_MODE) {
    Serial.print("Received message via MQTT: ");
    Serial.println(msgString);
  }

  // Process aREST commands
    String modified_message = String(msgString) + " /";
    char char_message[100];
    modified_message.toCharArray(char_message, 100);

    // Handle command with aREST
    handle(char_message);

    // Read answer
    char * answer = getBuffer();

    // Send response
    if (DEBUG_MODE) {
      Serial.print("Sending message via MQTT: ");
      Serial.println(answer);
      Serial.print("Size of MQTT message: ");
      Serial.println(strlen(answer));
      Serial.print("Size of client ID: ");
      Serial.println(strlen(client_id));
    }

    int max_message_size = 128 - 20 - strlen(client_id);

    if (strlen(answer) < max_message_size) {
      client.publish(out_topic, answer);
    }
    else {

      // Max iteration
      uint8_t max_iteration = (int)(strlen(answer)/max_message_size) + 1;

      // Send data
      for (uint8_t i = 0; i < max_iteration; i++) {
        char intermediate_buffer[max_message_size+1];
        memcpy(intermediate_buffer, buffer + i*max_message_size, max_message_size);
        intermediate_buffer[max_message_size] = '\0';

        if (DEBUG_MODE) {
          Serial.print("Intermediate buffer: ");
          Serial.println(intermediate_buffer);
          Serial.print("Intermediate buffer size: ");
          Serial.println(strlen(intermediate_buffer));
        }

        client.publish(out_topic, intermediate_buffer);

    }

   }

    // Send message
    // client.publish(out_topic, answer);

    // Reset buffer
    resetBuffer();


}

// Handle request on the Serial port
void loop(PubSubClient& client){

  // Connect to cloud
  if (!client.connected()) {
    reconnect(client);
  }
  client.loop();

}

void handle(PubSubClient& client){

  // Connect to cloud
  if (!client.connected()) {
    reconnect(client);
  }
  client.loop();

}

void reconnect(PubSubClient& client) {

  // Loop until we're reconnected
  while (!client.connected()) {
    Serial.print(F("Attempting MQTT connection..."));

      // Attempt to connect
      if (client.connect(client_id)) {
        if (private_mqtt_server) {
          Serial.println(F("Connected to MQTT server"));
        }
        else {
          Serial.println(F("Connected to aREST.io"));
        }
        client.subscribe(in_topic);

        // Subscribe to all
        // if (subscriptions_index > 0) {
        //
        //   for (int i = 0; i < subscriptions_index; i++) {
        //     if (DEBUG_MODE) {
        //       Serial.print(F("Subscribing to additional topic: "));
        //       Serial.println(subscriptions_names[i]);
        //     }
        //
        //     client.subscribe(subscriptions_names[i]);
        //   }
        //
        // }

      } else {
        Serial.print(F("failed, rc="));
        Serial.print(client.state());
        Serial.println(F(" try again in 5 seconds"));

        // Wait 5 seconds before retrying
        delay(5000);
      }

  }
}
#endif

void process(char c){

  // Check if we are receveing useful data and process it
  if ((c == '/' || c == '\r') && state == 'u') {

      if (DEBUG_MODE) {
        // #if defined(ESP8266)
        // Serial.print("Memory loss:");
        // Serial.println(freeMemory - ESP.getFreeHeap(),DEC);
        // freeMemory = ESP.getFreeHeap();
        // #endif
        Serial.println(answer);
      }

      // If the command is mode, and the pin is already selected
      if (command == 'm' && pin_selected && state == 'u') {

        // Get state
        state = answer[0];

     }

     // If a digital command has been received, process the data accordingly
     if (command == 'd' && pin_selected && state == 'u') {

       // If it's a read command, read from the pin and send data back
       if (answer[0] == 'r') {state = 'r';}

       // If not, get value we want to apply to the pin
       else {value = answer.toInt(); state = 'w';}
     }

     // If analog command has been selected, process the data accordingly
     if (command == 'a' && pin_selected && state == 'u') {

       // If it's a read, read from the correct pin
       if (answer[0] == 'r') {state = 'r';}

       // Else, write analog value
       else {value = answer.toInt(); state = 'w';}
     }

     // If the command is already selected, get the pin
     if (command != 'u' && pin_selected == false) {

       // Get pin
       if (answer[0] == 'A') {
         pin = 14 + answer[1] - '0';
       }
       else {
         pin = answer.toInt();
       }

       // Save pin for message
       message_pin = pin;

       // For ESP8266-12 boards (NODEMCU)
       #if defined(ARDUINO_ESP8266_NODEMCU) || defined(ARDUINO_ESP8266_WEMOS_D1MINI)
         pin = esp_12_pin_map(pin);
       #endif

       if (DEBUG_MODE) {
        Serial.print("Selected pin: ");
        Serial.println(pin);
       }

       // Mark pin as selected
       pin_selected = true;

       // Nothing more ?
       if ((answer[1] != '/' && answer[2] != '/')
        || (answer[1] == ' ' && answer[2] == '/')
        || (answer[2] == ' ' && answer[3] == '/')) {

        // Nothing more & digital ?
        if (command == 'd') {

          // Read all digital ?
          if (answer[0] == 'a') {state = 'a';}

          // Save state & end there
          else {state = 'r';}
        }

       // Nothing more & analog ?
       if (command == 'a') {

         // Read all analog ?
         if (answer[0] == 'a') {state = 'a';}

         // Save state & end there
         else {state = 'r';}
       }
     }

   }

     // Digital command received ?
     if (answer.startsWith("digital")) {command = 'd';}

     // Mode command received ?
     if (answer.startsWith("mode")) {command = 'm';}

     // Analog command received ?
     if (answer.startsWith("analog")) {
      command = 'a';

      #if defined(ESP8266)
      analogWriteRange(255);
      #endif

     }

     // Variable or function request received ?
     if (command == 'u') {

       // Check if variable name is in int array
       for (uint8_t i = 0; i < variables_index; i++){
         if(answer.startsWith(int_variables_names[i])) {

           // End here
           pin_selected = true;
           state = 'x';

           // Set state
           command = 'v';
           value = i;
         }
       }

       // Check if variable name is in float array (Mega & ESP8266 only)
       #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(ESP8266) || defined(CORE_WILDFIRE) || !defined(ADAFRUIT_CC3000_H)
       for (uint8_t i = 0; i < float_variables_index; i++){
         if(answer.startsWith(float_variables_names[i])) {

           // End here
           pin_selected = true;
           state = 'x';

           // Set state
           command = 'l';
           value = i;
         }
       }
       #endif

       // Check if variable name is in float array (Mega & ESP8266 only)
       #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(ESP8266) || defined(CORE_WILDFIRE) || !defined(ADAFRUIT_CC3000_H)
       for (uint8_t i = 0; i < string_variables_index; i++){
         if(answer.startsWith(string_variables_names[i])) {
...

This file has been truncated, please download it to see its full contents.

My Revised Huzzah with ESP8266 Control

HTML
You'll need to revise Huzzah's IP Address
<!DOCTYPE html>
<html>
<head>
	<meta charset=utf-8 />
	<title>aREST.js Demo</title>
	<link rel="stylesheet" type="text/css" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.4/css/bootstrap.min.css">
  <link rel="stylesheet" type="text/css" href="style.css">
	<script type="text/javascript" src="https://code.jquery.com/jquery-2.1.4.min.js"></script>
	<script type="text/javascript" src="https://cdn.rawgit.com/Foliotek/AjaxQ/master/ajaxq.js"></script>
	<script type="text/javascript" src="https://cdn.rawgit.com/marcoschwartz/aREST.js/master/aREST.js"></script>
	<script type="text/javascript" src="script.js"></script>
</head>
<body>

<div class='container'>

<h1>Robot</h1>

<div class='row'>
  <div class="col-md-3">
    Device IP address:192.168.1.248
  </div>
  <div class="col-md-3">
    <input id='device_address' type="text" name="fname">
  </div>
  <div class="col-md-2">
    <button id='validate' class='btn btn-primary btn-block' type="button">Validate</button>
  </div>
</div>

<div class='row'>

	<div class="col-md-5"></div>
  <div class="col-md-2">
    <button id='forward' class='btn btn-primary btn-block' type="button">Forward</button>
  </div>
	<div class="col-md-5"></div>

</div>

<div class='row'>

	<div class="col-md-4"></div>
	<div class="col-md-2">
		<button id='left' class='btn btn-primary btn-block' type="button">Left</button>
	</div>

	<div class="col-md-2">
		<button id='right' class='btn btn-primary btn-block' type="button">Right</button>
	</div>
	<div class="col-md-4"></div>

</div>

<div class='row'>

	<div class="col-md-5"></div>
  <div class="col-md-2">
    <button id='backward' class='btn btn-primary btn-block' type="button">Backward</button>
  </div>
	<div class="col-md-5"></div>

</div>

</div>

</body>
</html>

My Feather ESP8266Wifi Arduino code

Arduino
I changed the turning function to actually pivot because I am using a tracked vehicle
// Import required libraries
#include "ESP8266WiFi.h"
#include <aREST.h>
#include <Wire.h>
#include <Adafruit_MotorShield.h>

// Create the motor shield object with the default I2C address
Adafruit_MotorShield AFMS = Adafruit_MotorShield(); 
 
// And connect 2 DC motors to port M3 & M4 !
Adafruit_DCMotor *L_MOTOR = AFMS.getMotor(4);
Adafruit_DCMotor *R_MOTOR = AFMS.getMotor(3);

// Create aREST instance
aREST rest = aREST();

// WiFi parameters
const char* ssid = "wifi-name";
const char* password = "wifi-pass";

// The port to listen for incoming TCP connections 
#define LISTEN_PORT           80

// Create an instance of the server
WiFiServer server(LISTEN_PORT);

// Function
int stop(String message);
int forward(String message);
int right(String message);
int left(String message);
int backward(String message);

void setup(void)
{  
  // Start Serial
  Serial.begin(115200);

  // Init motor shield
  AFMS.begin();  

  // Functions          
  rest.function("stop", stop);
  rest.function("forward", forward);
  rest.function("left", left);
  rest.function("right", right);
  rest.function("backward", backward);
      
  // Give name and ID to device
  rest.set_id("1");
  rest.set_name("robot");
  
  // Connect to WiFi
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  Serial.println("");
  Serial.println("WiFi connected");
 
  // Start the server
  server.begin();
  Serial.println("Server started");
  
  // Print the IP address
  Serial.println(WiFi.localIP());
  
}

void loop() {
  
  // Handle REST calls
  WiFiClient client = server.available();
  if (!client) {
    return;
  }
  while(!client.available()){
    delay(1);
  }
  rest.handle(client);
 
}

int stop(String command) {
  
  // Stop
  L_MOTOR->setSpeed(0);
  L_MOTOR->run( RELEASE );
 
  R_MOTOR->setSpeed(0);
  R_MOTOR->run( RELEASE );
  
}

int forward(String command) {
  
  // Stop
  L_MOTOR->setSpeed(200);
  L_MOTOR->run( FORWARD );
 
  R_MOTOR->setSpeed(200);
  R_MOTOR->run( FORWARD );
  
}

int left(String command) {
  
  // Stop
  L_MOTOR->setSpeed(100);
  L_MOTOR->run( BACKWARD );
 
  R_MOTOR->setSpeed(100);
  R_MOTOR->run( FORWARD );
  
}

int right(String command) {
  
  // Stop
  L_MOTOR->setSpeed(100);
  L_MOTOR->run( FORWARD );
 
  R_MOTOR->setSpeed(100);
  R_MOTOR->run( BACKWARD );
  
}

int backward(String command) {
  
  // Stop
  L_MOTOR->setSpeed(150);
  L_MOTOR->run( BACKWARD );
 
  R_MOTOR->setSpeed(150);
  R_MOTOR->run( BACKWARD );
  
}

My Revised Feather 32u4 BLE Arduino code

Arduino
I revised to perform a pivot motion for turning functions
/*********************************************************************
 This is an example for our nRF51822 based Bluefruit LE modules
  
 Modified to drive a 3-wheeled BLE Robot Rover! by http://james.devi.to

 Pick one up today in the Adafruit shop!

 Adafruit invests time and resources providing this open source code,
 please support Adafruit and open-source hardware by purchasing
 products from Adafruit!

 MIT license, check LICENSE for more information
 All text above, and the splash screen below must be included in
 any redistribution
*********************************************************************/

#include <string.h>
#include <Arduino.h>
#include <SPI.h>
#if not defined (_VARIANT_ARDUINO_DUE_X_)
  #include <SoftwareSerial.h>
#endif

#include "Adafruit_BLE.h"
#include "Adafruit_BluefruitLE_SPI.h"
#include "Adafruit_BluefruitLE_UART.h"

#include "BluefruitConfig.h"

#include <Wire.h>
#include <Adafruit_MotorShield.h>
// #include "utility/Adafruit_PWMServoDriver.h"
// #include <Servo.h> 

// Create the motor shield object with the default I2C address
Adafruit_MotorShield AFMS = Adafruit_MotorShield(); 

// And connect 2 DC motors to port M3 & M4 !
Adafruit_DCMotor *L_MOTOR = AFMS.getMotor(4);
Adafruit_DCMotor *R_MOTOR = AFMS.getMotor(3);

//not used, testing acceleration
// int accelTime = 200;

//Name your RC here
String BROADCAST_NAME = "adafruit red robot rover";

String BROADCAST_CMD = String("AT+GAPDEVNAME=" + BROADCAST_NAME);

Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);


// A small helper
void error(const __FlashStringHelper*err) {
  Serial.println(err);
  while (1);
}

// function prototypes over in packetparser.cpp
uint8_t readPacket(Adafruit_BLE *ble, uint16_t timeout);
float parsefloat(uint8_t *buffer);
void printHex(const uint8_t * data, const uint32_t numBytes);

// the packet buffer
extern uint8_t packetbuffer[];

char buf[60];

/**************************************************************************/
/*!
    @brief  Sets up the HW an the BLE module (this function is called
            automatically on startup)
*/
/**************************************************************************/
void setup(void)
{
  Serial.begin(9600);

  AFMS.begin();  // create with the default frequency 1.6KHz

  // turn on motors
  L_MOTOR->setSpeed(0);
  L_MOTOR->run(RELEASE);

  R_MOTOR->setSpeed(0);
  R_MOTOR->run(RELEASE);
    
  Serial.begin(115200);
  Serial.println(F("Adafruit Bluefruit Robot Controller Example"));
  Serial.println(F("-----------------------------------------"));

  /* Initialize the module */
  BLEsetup();
  

}

int velocity = 0;

float x, y;

int L_restrict = 0;
int R_restrict = 0;

unsigned long lastAccelPacket = 0;

bool modeToggle = false;

void loop(void)
{
    // read new packet data
    uint8_t len = readPacket(&ble, BLE_READPACKET_TIMEOUT);
    // if (len == 0) return;

  // Read from Accelerometer input
    if( accelMode() ) {
      lastAccelPacket = millis();
      modeToggle = true;
      return;
    }

  // Stop motors if accelerometer data is turned off (100ms timeout)
    if( millis() - lastAccelPacket > 100 & modeToggle) {
      L_MOTOR->run(RELEASE);
      R_MOTOR->run(RELEASE);
      modeToggle = false;
      return;
    }

    //if no accelerometer, use control pad
    if( !modeToggle ) buttonMode();
    
}


bool accelMode(){
  if (packetbuffer[1] == 'A') {
          x = parsefloat( packetbuffer + 2 );
          y = parsefloat( packetbuffer + 6 );

        if( x <= -0.55 ){
          x += 0.55;
          x *= -100.0;
          L_MOTOR->run( BACKWARD );
          R_MOTOR->run( BACKWARD );
          if( x >= 45 ) x = 45;
          if( x <= 0 ) x = 0;
          velocity = map( x, 0, 45, 0 ,255 );
        }
        else if( x >= -0.25 ){
          x+= 0.25;
          x *= 100;
          L_MOTOR->run( FORWARD );
          R_MOTOR->run( FORWARD );
          if( x>= 45 ) x = 45;
          if( x<= 0 ) x = 0;
          velocity = map( x, 0, 45, 0, 255 );
        }
        else{
          L_MOTOR->run( RELEASE );
          R_MOTOR->run( RELEASE );
          velocity = 0;
        }

        //account for L / R accel

        if( y >= 0.1 ){
            y -= 0.1;
            y *= 100;
            if( y >= 50 ) y = 50;
            if( y <= 0 ) y = 0;

            L_restrict = fscale( y, 0.0, 50.0, 0.0, 100.0, -4.0 );
        }
        else if( y <= -0.1 ){
            y += 0.1;
            y *= -100;
            if( y>= 50 ) y = 50;
            if( y<= 0 ) y = 0;

            R_restrict = fscale( y, 0.0, 50.0, 0.0, 100.0, -4.0 );
        }
        else{
            L_restrict = 0;
            R_restrict = 0;
        }

          float Lpercent = ( 100.0 - L_restrict ) / 100.00 ;
          float Rpercent = ( 100.0 - R_restrict ) / 100.00 ;

          // Serial.print( x ); 
          // Serial.print( "\t" ); 
          // Serial.print( Lpercent ); 
          // Serial.print( "\t" ); 
          // Serial.print( velocity ); 
          // Serial.print( "\t" ); 
          // Serial.println( Rpercent ); 

          L_MOTOR->setSpeed( velocity * Lpercent ); 
          R_MOTOR->setSpeed( velocity * Rpercent ); 

          return true;
    }
    return false;
}

bool isMoving = false;

bool buttonMode(){

  static unsigned long lastPress = 0;
  

 // Buttons
  if (packetbuffer[1] == 'B') {

    uint8_t buttnum = packetbuffer[2] - '0';
    boolean pressed = packetbuffer[3] - '0';

    // Serial.println(buttnum);

  Serial.println(isMoving);
    if (pressed) {
      isMoving = true;
      if(buttnum == 5){
        L_MOTOR->run(FORWARD);
        R_MOTOR->run(FORWARD);
      }
      if(buttnum == 6){
        L_MOTOR->run(BACKWARD);
        R_MOTOR->run(BACKWARD);        
      }
      if(buttnum == 7){
        L_MOTOR->run(RELEASE);
        R_MOTOR->run(FORWARD);
      }
      if(buttnum == 8){
        L_MOTOR->run(FORWARD);
        R_MOTOR->run(RELEASE);        
      }

      lastPress = millis();
      
        L_MOTOR->setSpeed(255); 
        R_MOTOR->setSpeed(255);  
    } 

    else {
      isMoving = false;
      L_MOTOR->run(RELEASE);
      R_MOTOR->run(RELEASE);
    }
     return true; 
  }
    // if(isMoving){
      
      // unsigned long timeSincePress = millis() - lastPress;

      // if(timeSincePress <= accelTime){

      //   Serial.println( timeSincePress ) ;
        
      //   int motorSpeed = map( timeSincePress, 0, accelTime, 0, 255 );
        
      //   L_MOTOR->setSpeed(motorSpeed); 
      //   R_MOTOR->setSpeed(motorSpeed); 
      // }
      
      // else{
       // // full speed ahead!
        // L_MOTOR->setSpeed(255); 
        // R_MOTOR->setSpeed(255);  
      // }
   // }

  return false;

}

void BLEsetup(){
  Serial.print(F("Initialising the Bluefruit LE module: "));

  if ( !ble.begin(VERBOSE_MODE) )
  {
    error(F("Couldn't find Bluefruit, make sure it's in CoMmanD mode & check wiring?"));
  }
  Serial.println( F("OK!") );

  /* Perform a factory reset to make sure everything is in a known state */
  Serial.println(F("Performing a factory reset: "));
  if (! ble.factoryReset() ){
       error(F("Couldn't factory reset"));
  }

  //Convert the name change command to a char array
  BROADCAST_CMD.toCharArray(buf, 60);

  //Change the broadcast device name here!
  if(ble.sendCommandCheckOK(buf)){
    Serial.println("name changed");
  }
  delay(250);

  //reset to take effect
  if(ble.sendCommandCheckOK("ATZ")){
    Serial.println("resetting");
  }
  delay(250);

  //Confirm name change
  ble.sendCommandCheckOK("AT+GAPDEVNAME");

  /* Disable command echo from Bluefruit */
  ble.echo(false);

  Serial.println("Requesting Bluefruit info:");
  /* Print Bluefruit information */
  ble.info();

  Serial.println(F("Please use Adafruit Bluefruit LE app to connect in Controller mode"));
  Serial.println(F("Then activate/use the sensors, color picker, game controller, etc!"));
  Serial.println();

  ble.verbose(false);  // debug info is a little annoying after this point!

  /* Wait for connection */
  while (! ble.isConnected()) {
      delay(500);
  }

  Serial.println(F("*****************"));

  // Set Bluefruit to DATA mode
  Serial.println( F("Switching to DATA mode!") );
  ble.setMode(BLUEFRUIT_MODE_DATA);

  Serial.println(F("*****************"));
}

//Logarithmic mapping function from http://playground.arduino.cc/Main/Fscale
float fscale( float inputValue,  float originalMin, float originalMax, float newBegin, float newEnd, float curve){

  float OriginalRange = 0;
  float NewRange = 0;
  float zeroRefCurVal = 0;
  float normalizedCurVal = 0;
  float rangedValue = 0;
  boolean invFlag = 0;


  // condition curve parameter
  // limit range

  if (curve > 10) curve = 10;
  if (curve < -10) curve = -10;

  curve = (curve * -.1) ; // - invert and scale - this seems more intuitive - postive numbers give more weight to high end on output 
  curve = pow(10, curve); // convert linear scale into lograthimic exponent for other pow function

  /*
   Serial.println(curve * 100, DEC);   // multply by 100 to preserve resolution  
   Serial.println(); 
   */

  // Check for out of range inputValues
  if (inputValue < originalMin) {
    inputValue = originalMin;
  }
  if (inputValue > originalMax) {
    inputValue = originalMax;
  }

  // Zero Refference the values
  OriginalRange = originalMax - originalMin;

  if (newEnd > newBegin){ 
    NewRange = newEnd - newBegin;
  }
  else
  {
    NewRange = newBegin - newEnd; 
    invFlag = 1;
  }

  zeroRefCurVal = inputValue - originalMin;
  normalizedCurVal  =  zeroRefCurVal / OriginalRange;   // normalize to 0 - 1 float

  /*
  Serial.print(OriginalRange, DEC);  
   Serial.print("   ");  
   Serial.print(NewRange, DEC);  
   Serial.print("   ");  
   Serial.println(zeroRefCurVal, DEC);  
   Serial.println();  
   */

  // Check for originalMin > originalMax  - the math for all other cases i.e. negative numbers seems to work out fine 
  if (originalMin > originalMax ) {
    return 0;
  }

  if (invFlag == 0){
    rangedValue =  (pow(normalizedCurVal, curve) * NewRange) + newBegin;

  }
  else     // invert the ranges
  {   
    rangedValue =  newBegin - (pow(normalizedCurVal, curve) * NewRange); 
  }

  return rangedValue;
}

Adafruit BLE Rover config .h file

Arduino
this needs to be in Adafruit BLE Rover folder
// COMMON SETTINGS
// ----------------------------------------------------------------------------------------------
// These settings are used in both SW UART, HW UART and SPI mode
// ----------------------------------------------------------------------------------------------
#define BUFSIZE                        128   // Size of the read buffer for incoming data
#define VERBOSE_MODE                   true  // If set to 'true' enables debug output
#define BLE_READPACKET_TIMEOUT         500   // Timeout in ms waiting to read a response


// SOFTWARE UART SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the pins that will be used for 'SW' serial.
// You should use this option if you are connecting the UART Friend to an UNO
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_SWUART_RXD_PIN       9    // Required for software serial!
#define BLUEFRUIT_SWUART_TXD_PIN       10   // Required for software serial!
#define BLUEFRUIT_UART_CTS_PIN         11   // Required for software serial!
#define BLUEFRUIT_UART_RTS_PIN         -1   // Optional, set to -1 if unused


// HARDWARE UART SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the HW serial port you are using. Uncomment
// this line if you are connecting the BLE to Leonardo/Micro or Flora
// ----------------------------------------------------------------------------------------------
#ifdef Serial1    // this makes it not complain on compilation if there's no Serial1
  #define BLUEFRUIT_HWSERIAL_NAME      Serial1
#endif


// SHARED UART SETTINGS
// ----------------------------------------------------------------------------------------------
// The following sets the optional Mode pin, its recommended but not required
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_UART_MODE_PIN        12    // Set to -1 if unused


// SHARED SPI SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the pins to use for HW and SW SPI communication.
// SCK, MISO and MOSI should be connected to the HW SPI pins on the Uno when
// using HW SPI.  This should be used with nRF51822 based Bluefruit LE modules
// that use SPI (Bluefruit LE SPI Friend).
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_SPI_CS               8
#define BLUEFRUIT_SPI_IRQ              7
#define BLUEFRUIT_SPI_RST              6    // Optional but recommended, set to -1 if unused

// SOFTWARE SPI SETTINGS
// ----------------------------------------------------------------------------------------------
// The following macros declare the pins to use for SW SPI communication.
// This should be used with nRF51822 based Bluefruit LE modules that use SPI
// (Bluefruit LE SPI Friend).
// ----------------------------------------------------------------------------------------------
#define BLUEFRUIT_SPI_SCK              13
#define BLUEFRUIT_SPI_MISO             12
#define BLUEFRUIT_SPI_MOSI             11

Adafruit BLE packetParser.cpp

Arduino
this also needs to be in Adafruit BLE Rover folder
#include <string.h>
#include <Arduino.h>
#include <SPI.h>
#include <SoftwareSerial.h>

#include "Adafruit_BLE.h"
#include "Adafruit_BluefruitLE_SPI.h"
#include "Adafruit_BluefruitLE_UART.h"


#define PACKET_ACC_LEN                  (15)
#define PACKET_GYRO_LEN                 (15)
#define PACKET_MAG_LEN                  (15)
#define PACKET_QUAT_LEN                 (19)
#define PACKET_BUTTON_LEN               (5)
#define PACKET_COLOR_LEN                (6)
#define PACKET_LOCATION_LEN             (15)

//    READ_BUFSIZE            Size of the read buffer for incoming packets
#define READ_BUFSIZE                    (20)


/* Buffer to hold incoming characters */
uint8_t packetbuffer[READ_BUFSIZE+1];

/**************************************************************************/
/*!
    @brief  Casts the four bytes at the specified address to a float
*/
/**************************************************************************/
float parsefloat(uint8_t *buffer) 
{
  float f = ((float *)buffer)[0];
  return f;
}

/**************************************************************************/
/*! 
    @brief  Prints a hexadecimal value in plain characters
    @param  data      Pointer to the byte data
    @param  numBytes  Data length in bytes
*/
/**************************************************************************/
void printHex(const uint8_t * data, const uint32_t numBytes)
{
  uint32_t szPos;
  for (szPos=0; szPos < numBytes; szPos++) 
  {
    Serial.print(F("0x"));
    // Append leading 0 for small values
    if (data[szPos] <= 0xF)
    {
      Serial.print(F("0"));
      Serial.print(data[szPos] & 0xf, HEX);
    }
    else
    {
      Serial.print(data[szPos] & 0xff, HEX);
    }
    // Add a trailing space if appropriate
    if ((numBytes > 1) && (szPos != numBytes - 1))
    {
      Serial.print(F(" "));
    }
  }
  Serial.println();
}

/**************************************************************************/
/*!
    @brief  Waits for incoming data and parses it
*/
/**************************************************************************/
uint8_t readPacket(Adafruit_BLE *ble, uint16_t timeout) 
{
  uint16_t origtimeout = timeout, replyidx = 0;

  memset(packetbuffer, 0, READ_BUFSIZE);

  while (timeout--) {
    if (replyidx >= 20) break;
    if ((packetbuffer[1] == 'A') && (replyidx == PACKET_ACC_LEN))
      break;
    if ((packetbuffer[1] == 'G') && (replyidx == PACKET_GYRO_LEN))
      break;
    if ((packetbuffer[1] == 'M') && (replyidx == PACKET_MAG_LEN))
      break;
    if ((packetbuffer[1] == 'Q') && (replyidx == PACKET_QUAT_LEN))
      break;
    if ((packetbuffer[1] == 'B') && (replyidx == PACKET_BUTTON_LEN))
      break;
    if ((packetbuffer[1] == 'C') && (replyidx == PACKET_COLOR_LEN))
      break;
    if ((packetbuffer[1] == 'L') && (replyidx == PACKET_LOCATION_LEN))
      break;

    while (ble->available()) {
      char c =  ble->read();
      if (c == '!') {
        replyidx = 0;
      }
      packetbuffer[replyidx] = c;
      replyidx++;
      timeout = origtimeout;
    }
    
    if (timeout == 0) break;
    delay(1);
  }

  packetbuffer[replyidx] = 0;  // null term

  if (!replyidx)  // no data or timeout 
    return 0;
  if (packetbuffer[0] != '!')  // doesn't start with '!' packet beginning
    return 0;
  
  // check checksum!
  uint8_t xsum = 0;
  uint8_t checksum = packetbuffer[replyidx-1];
  
  for (uint8_t i=0; i<replyidx-1; i++) {
    xsum += packetbuffer[i];
  }
  xsum = ~xsum;

  // Throw an error message if the checksum's don't match
  if (xsum != checksum)
  {
    Serial.print("Checksum mismatch in packet : ");
    printHex(packetbuffer, replyidx+1);
    return 0;
  }
  
  // checksum passed!
  return replyidx;
}

BLE Robot Rover

Credits

James Martel

James Martel

47 projects • 57 followers
Self taught Robotics platform developer with electronics background

Comments