MetaView
Published © MIT

Control Plug By Voice, App Or Mechanical Button

Using a Linkit Smart 7688 Duo to create an Alexa voice enabled switch which can also be operated by a mobile app and mechanical button.

IntermediateFull instructions provided2 hours1,052
Control Plug By Voice, App Or Mechanical Button

Things used in this project

Hardware components

5v Power Supply
×1
5V opto-coupled relay
×1
Plug case
×1
Echo Dot
Amazon Alexa Echo Dot
×1

Software apps and online services

fauxmo.py
firmata

Story

Read more

Schematics

Schematics

The big part on the left is a USB-power supply which I disassembled and used as supply for the circuit. The relay with the opto-coupler is also a ready made circuit which I just use as is. The resistor in line with the opto-coupler's LED was too big I halved its value by bypassing it with another 1k resistor.

Code

fauxmo.py with support for button input and http request to be send from smartphone

Python
This is the fauxmo.py file which runs on python on OpenWRT side of Linkit Duo. The button input part and the http server are working.
#!/usr/bin/env python

"""
The MIT License (MIT)

Copyright (c) 2015 Maker Musings

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""

# For a complete discussion, see http://www.makermusings.com

import email.utils
import requests
import select
import socket
import struct
import sys
import time
import urllib
import uuid
import serial

from pyfirmata import ArduinoDue, util
from pyfirmata.util import Iterator



# This XML is the minimum needed to define one of our virtual switches
# to the Amazon Echo

SETUP_XML = """<?xml version="1.0"?>
<root>
  <device>
    <deviceType>urn:MakerMusings:device:controllee:1</deviceType>
    <friendlyName>%(device_name)s</friendlyName>
    <manufacturer>Belkin International Inc.</manufacturer>
    <modelName>Emulated Socket</modelName>
    <modelNumber>3.1415</modelNumber>
    <UDN>uuid:Socket-1_0-%(device_serial)s</UDN>
  </device>
</root>
"""


DEBUG = False

def dbg(msg):
    global DEBUG
    if DEBUG:
        print msg
        sys.stdout.flush()


# A simple utility class to wait for incoming data to be
# ready on a socket.

class poller:
    def __init__(self):
        if 'poll' in dir(select):
            self.use_poll = True
            self.poller = select.poll()
        else:
            self.use_poll = False
        self.targets = {}

    def add(self, target, fileno = None):
        if not fileno:
            fileno = target.fileno()
        if self.use_poll:
            self.poller.register(fileno, select.POLLIN)
        self.targets[fileno] = target

    def remove(self, target, fileno = None):
        if not fileno:
            fileno = target.fileno()
        if self.use_poll:
            self.poller.unregister(fileno)
        del(self.targets[fileno])

    def poll(self, timeout = 0):
        if self.use_poll:
            ready = self.poller.poll(timeout)
        else:
            ready = []
            if len(self.targets) > 0:
                (rlist, wlist, xlist) = select.select(self.targets.keys(), [], [], timeout)
                ready = [(x, None) for x in rlist]
        for one_ready in ready:
            target = self.targets.get(one_ready[0], None)
            if target:
                target.do_read(one_ready[0])
 

# Base class for a generic UPnP device. This is far from complete
# but it supports either specified or automatic IP address and port
# selection.

class upnp_device(object):
    this_host_ip = None

    @staticmethod
    def local_ip_address():
        if not upnp_device.this_host_ip:
            temp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
            try:
                temp_socket.connect(('8.8.8.8', 53))
                upnp_device.this_host_ip = temp_socket.getsockname()[0]
            except:
                upnp_device.this_host_ip = '127.0.0.1'
            del(temp_socket)
            dbg("got local address of %s" % upnp_device.this_host_ip)
        return upnp_device.this_host_ip
        

    def __init__(self, listener, poller, port, root_url, server_version, persistent_uuid, other_headers = None, ip_address = None):
        self.listener = listener
        self.poller = poller
        self.port = port
        self.root_url = root_url
        self.server_version = server_version
        self.persistent_uuid = persistent_uuid
        self.uuid = uuid.uuid4()
        self.other_headers = other_headers

        if ip_address:
            self.ip_address = ip_address
        else:
            self.ip_address = upnp_device.local_ip_address()

        self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        self.socket.bind((self.ip_address, self.port))
        self.socket.listen(5)
        if self.port == 0:
            self.port = self.socket.getsockname()[1]
        self.poller.add(self)
        self.client_sockets = {}
        if self.port != 8080:
            # don't add our fixed port handler here
            self.listener.add_device(self)

    def fileno(self):
        return self.socket.fileno()

    def do_read(self, fileno):
        if fileno == self.socket.fileno():
            (client_socket, client_address) = self.socket.accept()
            self.poller.add(self, client_socket.fileno())
            self.client_sockets[client_socket.fileno()] = client_socket
        else:
            data, sender = self.client_sockets[fileno].recvfrom(4096)
            if not data:
                self.poller.remove(self, fileno)
                del(self.client_sockets[fileno])
            else:
                self.handle_request(data, sender, self.client_sockets[fileno])

    def handle_request(self, data, sender, socket):
        pass

    def get_name(self):
        return "unknown"
        
    def respond_to_search(self, destination, search_target):
        dbg("Responding to search for %s" % self.get_name())
        date_str = email.utils.formatdate(timeval=None, localtime=False, usegmt=True)
        location_url = self.root_url % {'ip_address' : self.ip_address, 'port' : self.port}
        message = ("HTTP/1.1 200 OK\r\n"
                  "CACHE-CONTROL: max-age=86400\r\n"
                  "DATE: %s\r\n"
                  "EXT:\r\n"
                  "LOCATION: %s\r\n"
                  "OPT: \"http://schemas.upnp.org/upnp/1/0/\"; ns=01\r\n"
                  "01-NLS: %s\r\n"
                  "SERVER: %s\r\n"
                  "ST: %s\r\n"
                  "USN: uuid:%s::%s\r\n" % (date_str, location_url, self.uuid, self.server_version, search_target, self.persistent_uuid, search_target))
        if self.other_headers:
            for header in self.other_headers:
                message += "%s\r\n" % header
        message += "\r\n"
        temp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
        temp_socket.sendto(message, destination)
 

# This subclass does the bulk of the work to mimic a WeMo switch on the network.

class fauxmo(upnp_device):
    @staticmethod
    def make_uuid(name):
        return ''.join(["%x" % sum([ord(c) for c in name])] + ["%x" % ord(c) for c in "%sfauxmo!" % name])[:14]

    def __init__(self, name, listener, poller, ip_address, port, action_handler = None):
        self.serial = self.make_uuid(name)
        self.name = name
        self.ip_address = ip_address
        persistent_uuid = "Socket-1_0-" + self.serial
        other_headers = ['X-User-Agent: redsonic']
        upnp_device.__init__(self, listener, poller, port, "http://%(ip_address)s:%(port)s/setup.xml", "Unspecified, UPnP/1.0, Unspecified", persistent_uuid, other_headers=other_headers, ip_address=ip_address)
        if action_handler:
            self.action_handler = action_handler
        else:
            self.action_handler = self
        dbg("FauxMo device '%s' ready on %s:%s" % (self.name, self.ip_address, self.port))

    def get_name(self):
        return self.name

    def handle_request(self, data, sender, socket):
        dbg("handle_request %s" % (data))
        if data.find('GET /setup.xml HTTP/1.1') == 0:
            dbg("Responding to setup.xml for %s" % self.name)
            xml = SETUP_XML % {'device_name' : self.name, 'device_serial' : self.serial}
            date_str = email.utils.formatdate(timeval=None, localtime=False, usegmt=True)
            message = ("HTTP/1.1 200 OK\r\n"
                       "CONTENT-LENGTH: %d\r\n"
                       "CONTENT-TYPE: text/xml\r\n"
                       "DATE: %s\r\n"
                       "LAST-MODIFIED: Sat, 01 Jan 2000 00:01:15 GMT\r\n"
                       "SERVER: Unspecified, UPnP/1.0, Unspecified\r\n"
                       "X-User-Agent: redsonic\r\n"
                       "CONNECTION: close\r\n"
                       "\r\n"
                       "%s" % (len(xml), date_str, xml))
            socket.send(message)
        elif data.find('SOAPACTION: "urn:Belkin:service:basicevent:1#SetBinaryState"') != -1:
            success = False
            if data.find('<BinaryState>1</BinaryState>') != -1:
                # on
                dbg("Responding to ON for %s" % self.name)
                success = self.action_handler.on()
            elif data.find('<BinaryState>0</BinaryState>') != -1:
                # off
                dbg("Responding to OFF for %s" % self.name)
                success = self.action_handler.off()
            else:
                dbg("Unknown Binary State request:")
                dbg(data)
            if success:
                # The echo is happy with the 200 status code and doesn't
                # appear to care about the SOAP response body
                soap = ""
                date_str = email.utils.formatdate(timeval=None, localtime=False, usegmt=True)
                message = ("HTTP/1.1 200 OK\r\n"
                           "CONTENT-LENGTH: %d\r\n"
                           "CONTENT-TYPE: text/xml charset=\"utf-8\"\r\n"
                           "DATE: %s\r\n"
                           "EXT:\r\n"
                           "SERVER: Unspecified, UPnP/1.0, Unspecified\r\n"
                           "X-User-Agent: redsonic\r\n"
                           "CONNECTION: close\r\n"
                           "\r\n"
                           "%s" % (len(soap), date_str, soap))
                socket.send(message)
        elif data.find('GET /?value=high') == 0:
            # on
            dbg("Responding to ON for %s" % self.name)
            soap = "ok"
            date_str = email.utils.formatdate(timeval=None, localtime=False, usegmt=True)
            message = ("HTTP/1.1 200 OK\r\n"
                       "CONTENT-LENGTH: %d\r\n"
                       "DATE: %s\r\n"
                       "EXT:\r\n"
                       "SERVER: Unspecified, UPnP/1.0, Unspecified\r\n"
                       "X-User-Agent: redsonic\r\n"
                       "CONNECTION: close\r\n"
                       "\r\n"
                       "%s" % (len(soap), date_str, soap))
            socket.send(message)
            self.action_handler.on()
        elif data.find('GET /?value=low') == 0:
            # off
            dbg("Responding to OFF for %s" % self.name)
            soap = "ok"
            date_str = email.utils.formatdate(timeval=None, localtime=False, usegmt=True)
            message = ("HTTP/1.1 200 OK\r\n"
                       "CONTENT-LENGTH: %d\r\n"
                       "DATE: %s\r\n"
                       "EXT:\r\n"
                       "SERVER: Unspecified, UPnP/1.0, Unspecified\r\n"
                       "X-User-Agent: redsonic\r\n"
                       "CONNECTION: close\r\n"
                       "\r\n"
                       "%s" % (len(soap), date_str, soap))
            socket.send(message)
            self.action_handler.off()
        else:
            dbg(data)

    def on(self):
        return False

    def off(self):
        return True


# Since we have a single process managing several virtual UPnP devices,
# we only need a single listener for UPnP broadcasts. When a matching
# search is received, it causes each device instance to respond.
#
# Note that this is currently hard-coded to recognize only the search
# from the Amazon Echo for WeMo devices. In particular, it does not
# support the more common root device general search. The Echo
# doesn't search for root devices.

class upnp_broadcast_responder(object):
    TIMEOUT = 0

    def __init__(self):
        self.devices = []

    def init_socket(self):
        ok = True
        self.ip = '239.255.255.250'
        self.port = 1900
        try:
            #This is needed to join a multicast group
            self.mreq = struct.pack("4sl",socket.inet_aton(self.ip),socket.INADDR_ANY)

            #Set up server socket
            self.ssock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM,socket.IPPROTO_UDP)
            self.ssock.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)

            try:
                self.ssock.bind(('',self.port))
            except Exception, e:
                dbg("WARNING: Failed to bind %s:%d: %s" , (self.ip,self.port,e))
                ok = False

            try:
                self.ssock.setsockopt(socket.IPPROTO_IP,socket.IP_ADD_MEMBERSHIP,self.mreq)
            except Exception, e:
                dbg('WARNING: Failed to join multicast group:',e)
                ok = False

        except Exception, e:
            dbg("Failed to initialize UPnP sockets:",e)
            return False
        if ok:
            dbg("Listening for UPnP broadcasts")

    def fileno(self):
        return self.ssock.fileno()

    def do_read(self, fileno):
        data, sender = self.recvfrom(1024)
        if data:
            if data.find('M-SEARCH') == 0 and data.find('urn:Belkin:device:**') != -1:
                for device in self.devices:
                    time.sleep(0.1)
                    device.respond_to_search(sender, 'urn:Belkin:device:**')
            else:
                pass

    #Receive network data
    def recvfrom(self,size):
        if self.TIMEOUT:
            self.ssock.setblocking(0)
            ready = select.select([self.ssock], [], [], self.TIMEOUT)[0]
        else:
            self.ssock.setblocking(1)
            ready = True

        try:
            if ready:
                return self.ssock.recvfrom(size)
            else:
                return False, False
        except Exception, e:
            dbg(e)
            return False, False

    def add_device(self, device):
        self.devices.append(device)
        dbg("UPnP broadcast listener: new device registered")


class android_handler(object):
    def __init__(self):
        self.board = ArduinoDue('/dev/ttyS0')
        self.iterator = Iterator(self.board)
        self.iterator.start()
        self.button = self.board.get_pin('d:12:i')
        self.button.enable_reporting()
        self.button_state = 0

    def on(self):
        self.board.digital[13].write(1)
        return True

    def off(self):
        self.board.digital[13].write(0)
        return True

    def poll(self):
        r = self.button.read()
        print r
        if r != self.button_state:
            self.board.digital[13].write(r)
        self.button_state = r
        return True

# This is an example handler class. The fauxmo class expects handlers to be
# instances of objects that have on() and off() methods that return True
# on success and False otherwise.
#
# This example class takes two full URLs that should be requested when an on
# and off command are invoked respectively. It ignores any return data.

class rest_api_handler(object):
    def __init__(self, on_cmd, off_cmd):
        self.on_cmd = on_cmd
        self.off_cmd = off_cmd

    def on(self):
        r = requests.get(self.on_cmd)
        return r.status_code == 200

    def off(self):
        r = requests.get(self.off_cmd)
        return r.status_code == 200


# Each entry is a list with the following elements:
#
# name of the virtual switch
# object with 'on' and 'off' methods
# port # (optional; may be omitted)

# NOTE: As of 2015-08-17, the Echo appears to have a hard-coded limit of
# 16 switches it can control. Only the first 16 elements of the FAUXMOS
# list will be used.

FAUXMOS = [
    ['steckdose'],
#    ['kitchen lights', rest_api_handler()],
]


if len(sys.argv) > 1 and sys.argv[1] == '-d':
    DEBUG = True

# Set up our singleton for polling the sockets for data ready
p = poller()

# Set up our singleton listener for UPnP broadcasts
u = upnp_broadcast_responder()
u.init_socket()

# Add the UPnP broadcast listener to the poller so we can respond
# when a broadcast is received.
p.add(u)

# create android handler instance only once
a = android_handler()

# Create our FauxMo virtual switch devices
for one_faux in FAUXMOS:
    if len(one_faux) == 1:
        # action handler wasn't specified, use the android handler instance
		one_faux.append(a)
    if len(one_faux) < 3:
        # a fixed port wasn't specified, use a dynamic one
        one_faux.append(0)
    switch = fauxmo(one_faux[0], u, p, None, one_faux[2], action_handler = one_faux[1])
# one fixed port handler
switch = fauxmo('fixed port handler', u, p, None, 8080, action_handler = a)

dbg("Entering main loop\n")

while True:
    try:
        # Allow time for a ctrl-c to stop the process
        p.poll(100)
        time.sleep(0.1)
        a.poll()
    except Exception, e:
        dbg(e)
        break

StandardFirmata code for Arduino part of the Linkit Duo

Arduino
Upload this to the Arduino part.
/*
  Firmata is a generic protocol for communicating with microcontrollers
  from software on a host computer. It is intended to work with
  any host computer software package.

  To download a host software package, please click on the following link
  to open the list of Firmata client libraries in your default browser.

  https://github.com/firmata/arduino#firmata-client-libraries

  Copyright (C) 2006-2008 Hans-Christoph Steiner.  All rights reserved.
  Copyright (C) 2010-2011 Paul Stoffregen.  All rights reserved.
  Copyright (C) 2009 Shigeru Kobayashi.  All rights reserved.
  Copyright (C) 2009-2016 Jeff Hoefs.  All rights reserved.

  This library is free software; you can redistribute it and/or
  modify it under the terms of the GNU Lesser General Public
  License as published by the Free Software Foundation; either
  version 2.1 of the License, or (at your option) any later version.

  See file LICENSE.txt for further informations on licensing terms.

  Last updated October 16th, 2016
*/

#include <Servo.h>
#include <Wire.h>
#include <Firmata.h>



#define I2C_WRITE                   B00000000
#define I2C_READ                    B00001000
#define I2C_READ_CONTINUOUSLY       B00010000
#define I2C_STOP_READING            B00011000
#define I2C_READ_WRITE_MODE_MASK    B00011000
#define I2C_10BIT_ADDRESS_MODE_MASK B00100000
#define I2C_END_TX_MASK             B01000000
#define I2C_STOP_TX                 1
#define I2C_RESTART_TX              0
#define I2C_MAX_QUERIES             8
#define I2C_REGISTER_NOT_SPECIFIED  -1

// the minimum interval for sampling analog input
#define MINIMUM_SAMPLING_INTERVAL   1


/*==============================================================================
 * GLOBAL VARIABLES
 *============================================================================*/

#ifdef FIRMATA_SERIAL_FEATURE
SerialFirmata serialFeature;
#endif

/* analog inputs */
int analogInputsToReport = 0; // bitwise array to store pin reporting

/* digital input ports */
byte reportPINs[TOTAL_PORTS];       // 1 = report this port, 0 = silence
byte previousPINs[TOTAL_PORTS];     // previous 8 bits sent

/* pins configuration */
byte portConfigInputs[TOTAL_PORTS]; // each bit: 1 = pin in INPUT, 0 = anything else

/* timer variables */
unsigned long currentMillis;        // store the current value from millis()
unsigned long previousMillis;       // for comparison with currentMillis
unsigned int samplingInterval = 19; // how often to run the main loop (in ms)

/* i2c data */
struct i2c_device_info {
  byte addr;
  int reg;
  byte bytes;
  byte stopTX;
};

/* for i2c read continuous more */
i2c_device_info query[I2C_MAX_QUERIES];

byte i2cRxData[64];
boolean isI2CEnabled = false;
signed char queryIndex = -1;
// default delay time between i2c read request and Wire.requestFrom()
unsigned int i2cReadDelayTime = 0;

Servo servos[MAX_SERVOS];
byte servoPinMap[TOTAL_PINS];
byte detachedServos[MAX_SERVOS];
byte detachedServoCount = 0;
byte servoCount = 0;

boolean isResetting = false;

// Forward declare a few functions to avoid compiler errors with older versions
// of the Arduino IDE.
void setPinModeCallback(byte, int);
void reportAnalogCallback(byte analogPin, int value);
void sysexCallback(byte, byte, byte*);

/* utility functions */
void wireWrite(byte data)
{
#if ARDUINO >= 100
  Wire.write((byte)data);
#else
  Wire.send(data);
#endif
}

byte wireRead(void)
{
#if ARDUINO >= 100
  return Wire.read();
#else
  return Wire.receive();
#endif
}

/*==============================================================================
 * FUNCTIONS
 *============================================================================*/

void attachServo(byte pin, int minPulse, int maxPulse)
{
  if (servoCount < MAX_SERVOS) {
    // reuse indexes of detached servos until all have been reallocated
    if (detachedServoCount > 0) {
      servoPinMap[pin] = detachedServos[detachedServoCount - 1];
      if (detachedServoCount > 0) detachedServoCount--;
    } else {
      servoPinMap[pin] = servoCount;
      servoCount++;
    }
    if (minPulse > 0 && maxPulse > 0) {
      servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin), minPulse, maxPulse);
    } else {
      servos[servoPinMap[pin]].attach(PIN_TO_DIGITAL(pin));
    }
  } else {
    Firmata.sendString("Max servos attached");
  }
}

void detachServo(byte pin)
{
  servos[servoPinMap[pin]].detach();
  // if we're detaching the last servo, decrement the count
  // otherwise store the index of the detached servo
  if (servoPinMap[pin] == servoCount && servoCount > 0) {
    servoCount--;
  } else if (servoCount > 0) {
    // keep track of detached servos because we want to reuse their indexes
    // before incrementing the count of attached servos
    detachedServoCount++;
    detachedServos[detachedServoCount - 1] = servoPinMap[pin];
  }

  servoPinMap[pin] = 255;
}

void enableI2CPins()
{
  byte i;
  // is there a faster way to do this? would probaby require importing
  // Arduino.h to get SCL and SDA pins
  for (i = 0; i < TOTAL_PINS; i++) {
    if (IS_PIN_I2C(i)) {
      // mark pins as i2c so they are ignore in non i2c data requests
      setPinModeCallback(i, PIN_MODE_I2C);
    }
  }

  isI2CEnabled = true;

  Wire.begin();
}

/* disable the i2c pins so they can be used for other functions */
void disableI2CPins() {
  isI2CEnabled = false;
  // disable read continuous mode for all devices
  queryIndex = -1;
}

void readAndReportData(byte address, int theRegister, byte numBytes, byte stopTX) {
  // allow I2C requests that don't require a register read
  // for example, some devices using an interrupt pin to signify new data available
  // do not always require the register read so upon interrupt you call Wire.requestFrom()
  if (theRegister != I2C_REGISTER_NOT_SPECIFIED) {
    Wire.beginTransmission(address);
    wireWrite((byte)theRegister);
    Wire.endTransmission(stopTX); // default = true
    // do not set a value of 0
    if (i2cReadDelayTime > 0) {
      // delay is necessary for some devices such as WiiNunchuck
      delayMicroseconds(i2cReadDelayTime);
    }
  } else {
    theRegister = 0;  // fill the register with a dummy value
  }

  Wire.requestFrom(address, numBytes);  // all bytes are returned in requestFrom

  // check to be sure correct number of bytes were returned by slave
  if (numBytes < Wire.available()) {
    Firmata.sendString("I2C: Too many bytes received");
  } else if (numBytes > Wire.available()) {
    Firmata.sendString("I2C: Too few bytes received");
  }

  i2cRxData[0] = address;
  i2cRxData[1] = theRegister;

  for (int i = 0; i < numBytes && Wire.available(); i++) {
    i2cRxData[2 + i] = wireRead();
  }

  // send slave address, register and received bytes
  Firmata.sendSysex(SYSEX_I2C_REPLY, numBytes + 2, i2cRxData);
}

void outputPort(byte portNumber, byte portValue, byte forceSend)
{
  // pins not configured as INPUT are cleared to zeros
  portValue = portValue & portConfigInputs[portNumber];
  // only send if the value is different than previously sent
  if (forceSend || previousPINs[portNumber] != portValue) {
    Firmata.sendDigitalPort(portNumber, portValue);
    previousPINs[portNumber] = portValue;
  }
}

/* -----------------------------------------------------------------------------
 * check all the active digital inputs for change of state, then add any events
 * to the Serial output queue using Serial.print() */
void checkDigitalInputs(void)
{
  /* Using non-looping code allows constants to be given to readPort().
   * The compiler will apply substantial optimizations if the inputs
   * to readPort() are compile-time constants. */
  if (TOTAL_PORTS > 0 && reportPINs[0]) outputPort(0, readPort(0, portConfigInputs[0]), false);
  if (TOTAL_PORTS > 1 && reportPINs[1]) outputPort(1, readPort(1, portConfigInputs[1]), false);
  if (TOTAL_PORTS > 2 && reportPINs[2]) outputPort(2, readPort(2, portConfigInputs[2]), false);
  if (TOTAL_PORTS > 3 && reportPINs[3]) outputPort(3, readPort(3, portConfigInputs[3]), false);
  if (TOTAL_PORTS > 4 && reportPINs[4]) outputPort(4, readPort(4, portConfigInputs[4]), false);
  if (TOTAL_PORTS > 5 && reportPINs[5]) outputPort(5, readPort(5, portConfigInputs[5]), false);
  if (TOTAL_PORTS > 6 && reportPINs[6]) outputPort(6, readPort(6, portConfigInputs[6]), false);
  if (TOTAL_PORTS > 7 && reportPINs[7]) outputPort(7, readPort(7, portConfigInputs[7]), false);
  if (TOTAL_PORTS > 8 && reportPINs[8]) outputPort(8, readPort(8, portConfigInputs[8]), false);
  if (TOTAL_PORTS > 9 && reportPINs[9]) outputPort(9, readPort(9, portConfigInputs[9]), false);
  if (TOTAL_PORTS > 10 && reportPINs[10]) outputPort(10, readPort(10, portConfigInputs[10]), false);
  if (TOTAL_PORTS > 11 && reportPINs[11]) outputPort(11, readPort(11, portConfigInputs[11]), false);
  if (TOTAL_PORTS > 12 && reportPINs[12]) outputPort(12, readPort(12, portConfigInputs[12]), false);
  if (TOTAL_PORTS > 13 && reportPINs[13]) outputPort(13, readPort(13, portConfigInputs[13]), false);
  if (TOTAL_PORTS > 14 && reportPINs[14]) outputPort(14, readPort(14, portConfigInputs[14]), false);
  if (TOTAL_PORTS > 15 && reportPINs[15]) outputPort(15, readPort(15, portConfigInputs[15]), false);
}

// -----------------------------------------------------------------------------
/* sets the pin mode to the correct state and sets the relevant bits in the
 * two bit-arrays that track Digital I/O and PWM status
 */
void setPinModeCallback(byte pin, int mode)
{
  if (Firmata.getPinMode(pin) == PIN_MODE_IGNORE)
    return;

  if (Firmata.getPinMode(pin) == PIN_MODE_I2C && isI2CEnabled && mode != PIN_MODE_I2C) {
    // disable i2c so pins can be used for other functions
    // the following if statements should reconfigure the pins properly
    disableI2CPins();
  }
  if (IS_PIN_DIGITAL(pin) && mode != PIN_MODE_SERVO) {
    if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
      detachServo(pin);
    }
  }
  if (IS_PIN_ANALOG(pin)) {
    reportAnalogCallback(PIN_TO_ANALOG(pin), mode == PIN_MODE_ANALOG ? 1 : 0); // turn on/off reporting
  }
  if (IS_PIN_DIGITAL(pin)) {
    if (mode == INPUT || mode == PIN_MODE_PULLUP) {
      portConfigInputs[pin / 8] |= (1 << (pin & 7));
    } else {
      portConfigInputs[pin / 8] &= ~(1 << (pin & 7));
    }
  }
  Firmata.setPinState(pin, 0);
  switch (mode) {
    case PIN_MODE_ANALOG:
      if (IS_PIN_ANALOG(pin)) {
        if (IS_PIN_DIGITAL(pin)) {
          pinMode(PIN_TO_DIGITAL(pin), INPUT);    // disable output driver
#if ARDUINO <= 100
          // deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
          digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
        }
        Firmata.setPinMode(pin, PIN_MODE_ANALOG);
      }
      break;
    case INPUT:
      if (IS_PIN_DIGITAL(pin)) {
        pinMode(PIN_TO_DIGITAL(pin), INPUT);    // disable output driver
#if ARDUINO <= 100
        // deprecated since Arduino 1.0.1 - TODO: drop support in Firmata 2.6
        digitalWrite(PIN_TO_DIGITAL(pin), LOW); // disable internal pull-ups
#endif
        Firmata.setPinMode(pin, INPUT);
      }
      break;
    case PIN_MODE_PULLUP:
      if (IS_PIN_DIGITAL(pin)) {
        pinMode(PIN_TO_DIGITAL(pin), INPUT_PULLUP);
        Firmata.setPinMode(pin, PIN_MODE_PULLUP);
        Firmata.setPinState(pin, 1);
      }
      break;
    case OUTPUT:
      if (IS_PIN_DIGITAL(pin)) {
        if (Firmata.getPinMode(pin) == PIN_MODE_PWM) {
          // Disable PWM if pin mode was previously set to PWM.
          digitalWrite(PIN_TO_DIGITAL(pin), LOW);
        }
        pinMode(PIN_TO_DIGITAL(pin), OUTPUT);
        Firmata.setPinMode(pin, OUTPUT);
      }
      break;
    case PIN_MODE_PWM:
      if (IS_PIN_PWM(pin)) {
        pinMode(PIN_TO_PWM(pin), OUTPUT);
        analogWrite(PIN_TO_PWM(pin), 0);
        Firmata.setPinMode(pin, PIN_MODE_PWM);
      }
      break;
    case PIN_MODE_SERVO:
      if (IS_PIN_DIGITAL(pin)) {
        Firmata.setPinMode(pin, PIN_MODE_SERVO);
        if (servoPinMap[pin] == 255 || !servos[servoPinMap[pin]].attached()) {
          // pass -1 for min and max pulse values to use default values set
          // by Servo library
          attachServo(pin, -1, -1);
        }
      }
      break;
    case PIN_MODE_I2C:
      if (IS_PIN_I2C(pin)) {
        // mark the pin as i2c
        // the user must call I2C_CONFIG to enable I2C for a device
        Firmata.setPinMode(pin, PIN_MODE_I2C);
      }
      break;
    case PIN_MODE_SERIAL:
#ifdef FIRMATA_SERIAL_FEATURE
      serialFeature.handlePinMode(pin, PIN_MODE_SERIAL);
#endif
      break;
    default:
      Firmata.sendString("Unknown pin mode"); // TODO: put error msgs in EEPROM
  }
  // TODO: save status to EEPROM here, if changed
}

/*
 * Sets the value of an individual pin. Useful if you want to set a pin value but
 * are not tracking the digital port state.
 * Can only be used on pins configured as OUTPUT.
 * Cannot be used to enable pull-ups on Digital INPUT pins.
 */
void setPinValueCallback(byte pin, int value)
{
  if (pin < TOTAL_PINS && IS_PIN_DIGITAL(pin)) {
    if (Firmata.getPinMode(pin) == OUTPUT) {
      Firmata.setPinState(pin, value);
      digitalWrite(PIN_TO_DIGITAL(pin), value);
    }
  }
}

void analogWriteCallback(byte pin, int value)
{
  if (pin < TOTAL_PINS) {
    switch (Firmata.getPinMode(pin)) {
      case PIN_MODE_SERVO:
        if (IS_PIN_DIGITAL(pin))
          servos[servoPinMap[pin]].write(value);
        Firmata.setPinState(pin, value);
        break;
      case PIN_MODE_PWM:
        if (IS_PIN_PWM(pin))
          analogWrite(PIN_TO_PWM(pin), value);
        Firmata.setPinState(pin, value);
        break;
    }
  }
}

void digitalWriteCallback(byte port, int value)
{
  byte pin, lastPin, pinValue, mask = 1, pinWriteMask = 0;

  if (port < TOTAL_PORTS) {
    // create a mask of the pins on this port that are writable.
    lastPin = port * 8 + 8;
    if (lastPin > TOTAL_PINS) lastPin = TOTAL_PINS;
    for (pin = port * 8; pin < lastPin; pin++) {
      // do not disturb non-digital pins (eg, Rx & Tx)
      if (IS_PIN_DIGITAL(pin)) {
        // do not touch pins in PWM, ANALOG, SERVO or other modes
        if (Firmata.getPinMode(pin) == OUTPUT || Firmata.getPinMode(pin) == INPUT) {
          pinValue = ((byte)value & mask) ? 1 : 0;
          if (Firmata.getPinMode(pin) == OUTPUT) {
            pinWriteMask |= mask;
          } else if (Firmata.getPinMode(pin) == INPUT && pinValue == 1 && Firmata.getPinState(pin) != 1) {
            // only handle INPUT here for backwards compatibility
#if ARDUINO > 100
            pinMode(pin, INPUT_PULLUP);
#else
            // only write to the INPUT pin to enable pullups if Arduino v1.0.0 or earlier
            pinWriteMask |= mask;
#endif
          }
          Firmata.setPinState(pin, pinValue);
        }
      }
      mask = mask << 1;
    }
    writePort(port, (byte)value, pinWriteMask);
  }
}


// -----------------------------------------------------------------------------
/* sets bits in a bit array (int) to toggle the reporting of the analogIns
 */
//void FirmataClass::setAnalogPinReporting(byte pin, byte state) {
//}
void reportAnalogCallback(byte analogPin, int value)
{
  if (analogPin < TOTAL_ANALOG_PINS) {
    if (value == 0) {
      analogInputsToReport = analogInputsToReport & ~ (1 << analogPin);
    } else {
      analogInputsToReport = analogInputsToReport | (1 << analogPin);
      // prevent during system reset or all analog pin values will be reported
      // which may report noise for unconnected analog pins
      if (!isResetting) {
        // Send pin value immediately. This is helpful when connected via
        // ethernet, wi-fi or bluetooth so pin states can be known upon
        // reconnecting.
        Firmata.sendAnalog(analogPin, analogRead(analogPin));
      }
    }
  }
  // TODO: save status to EEPROM here, if changed
}

void reportDigitalCallback(byte port, int value)
{
  if (port < TOTAL_PORTS) {
    reportPINs[port] = (byte)value;
    // Send port value immediately. This is helpful when connected via
    // ethernet, wi-fi or bluetooth so pin states can be known upon
    // reconnecting.
    if (value) outputPort(port, readPort(port, portConfigInputs[port]), true);
  }
  // do not disable analog reporting on these 8 pins, to allow some
  // pins used for digital, others analog.  Instead, allow both types
  // of reporting to be enabled, but check if the pin is configured
  // as analog when sampling the analog inputs.  Likewise, while
  // scanning digital pins, portConfigInputs will mask off values from any
  // pins configured as analog
}

/*==============================================================================
 * SYSEX-BASED commands
 *============================================================================*/

void sysexCallback(byte command, byte argc, byte *argv)
{
  byte mode;
  byte stopTX;
  byte slaveAddress;
  byte data;
  int slaveRegister;
  unsigned int delayTime;

  switch (command) {
    case I2C_REQUEST:
      mode = argv[1] & I2C_READ_WRITE_MODE_MASK;
      if (argv[1] & I2C_10BIT_ADDRESS_MODE_MASK) {
        Firmata.sendString("10-bit addressing not supported");
        return;
      }
      else {
        slaveAddress = argv[0];
      }

      // need to invert the logic here since 0 will be default for client
      // libraries that have not updated to add support for restart tx
      if (argv[1] & I2C_END_TX_MASK) {
        stopTX = I2C_RESTART_TX;
      }
      else {
        stopTX = I2C_STOP_TX; // default
      }

      switch (mode) {
        case I2C_WRITE:
          Wire.beginTransmission(slaveAddress);
          for (byte i = 2; i < argc; i += 2) {
            data = argv[i] + (argv[i + 1] << 7);
            wireWrite(data);
          }
          Wire.endTransmission();
          delayMicroseconds(70);
          break;
        case I2C_READ:
          if (argc == 6) {
            // a slave register is specified
            slaveRegister = argv[2] + (argv[3] << 7);
            data = argv[4] + (argv[5] << 7);  // bytes to read
          }
          else {
            // a slave register is NOT specified
            slaveRegister = I2C_REGISTER_NOT_SPECIFIED;
            data = argv[2] + (argv[3] << 7);  // bytes to read
          }
          readAndReportData(slaveAddress, (int)slaveRegister, data, stopTX);
          break;
        case I2C_READ_CONTINUOUSLY:
          if ((queryIndex + 1) >= I2C_MAX_QUERIES) {
            // too many queries, just ignore
            Firmata.sendString("too many queries");
            break;
          }
          if (argc == 6) {
            // a slave register is specified
            slaveRegister = argv[2] + (argv[3] << 7);
            data = argv[4] + (argv[5] << 7);  // bytes to read
          }
          else {
            // a slave register is NOT specified
            slaveRegister = (int)I2C_REGISTER_NOT_SPECIFIED;
            data = argv[2] + (argv[3] << 7);  // bytes to read
          }
          queryIndex++;
          query[queryIndex].addr = slaveAddress;
          query[queryIndex].reg = slaveRegister;
          query[queryIndex].bytes = data;
          query[queryIndex].stopTX = stopTX;
          break;
        case I2C_STOP_READING:
          byte queryIndexToSkip;
          // if read continuous mode is enabled for only 1 i2c device, disable
          // read continuous reporting for that device
          if (queryIndex <= 0) {
            queryIndex = -1;
          } else {
            queryIndexToSkip = 0;
            // if read continuous mode is enabled for multiple devices,
            // determine which device to stop reading and remove it's data from
            // the array, shifiting other array data to fill the space
            for (byte i = 0; i < queryIndex + 1; i++) {
              if (query[i].addr == slaveAddress) {
                queryIndexToSkip = i;
                break;
              }
            }

            for (byte i = queryIndexToSkip; i < queryIndex + 1; i++) {
              if (i < I2C_MAX_QUERIES) {
                query[i].addr = query[i + 1].addr;
                query[i].reg = query[i + 1].reg;
                query[i].bytes = query[i + 1].bytes;
                query[i].stopTX = query[i + 1].stopTX;
              }
            }
            queryIndex--;
          }
          break;
        default:
          break;
      }
      break;
    case I2C_CONFIG:
      delayTime = (argv[0] + (argv[1] << 7));

      if (delayTime > 0) {
        i2cReadDelayTime = delayTime;
      }

      if (!isI2CEnabled) {
        enableI2CPins();
      }

      break;
    case SERVO_CONFIG:
      if (argc > 4) {
        // these vars are here for clarity, they'll optimized away by the compiler
        byte pin = argv[0];
        int minPulse = argv[1] + (argv[2] << 7);
        int maxPulse = argv[3] + (argv[4] << 7);

        if (IS_PIN_DIGITAL(pin)) {
          if (servoPinMap[pin] < MAX_SERVOS && servos[servoPinMap[pin]].attached()) {
            detachServo(pin);
          }
          attachServo(pin, minPulse, maxPulse);
          setPinModeCallback(pin, PIN_MODE_SERVO);
        }
      }
      break;
    case SAMPLING_INTERVAL:
      if (argc > 1) {
        samplingInterval = argv[0] + (argv[1] << 7);
        if (samplingInterval < MINIMUM_SAMPLING_INTERVAL) {
          samplingInterval = MINIMUM_SAMPLING_INTERVAL;
        }
      } else {
        //Firmata.sendString("Not enough data");
      }
      break;
    case EXTENDED_ANALOG:
      if (argc > 1) {
        int val = argv[1];
        if (argc > 2) val |= (argv[2] << 7);
        if (argc > 3) val |= (argv[3] << 14);
        analogWriteCallback(argv[0], val);
      }
      break;
    case CAPABILITY_QUERY:
      Firmata.write(START_SYSEX);
      Firmata.write(CAPABILITY_RESPONSE);
      for (byte pin = 0; pin < TOTAL_PINS; pin++) {
        if (IS_PIN_DIGITAL(pin)) {
          Firmata.write((byte)INPUT);
          Firmata.write(1);
          Firmata.write((byte)PIN_MODE_PULLUP);
          Firmata.write(1);
          Firmata.write((byte)OUTPUT);
          Firmata.write(1);
        }
        if (IS_PIN_ANALOG(pin)) {
          Firmata.write(PIN_MODE_ANALOG);
          Firmata.write(10); // 10 = 10-bit resolution
        }
        if (IS_PIN_PWM(pin)) {
          Firmata.write(PIN_MODE_PWM);
          Firmata.write(DEFAULT_PWM_RESOLUTION);
        }
        if (IS_PIN_DIGITAL(pin)) {
          Firmata.write(PIN_MODE_SERVO);
          Firmata.write(14);
        }
        if (IS_PIN_I2C(pin)) {
          Firmata.write(PIN_MODE_I2C);
          Firmata.write(1);  // TODO: could assign a number to map to SCL or SDA
        }
#ifdef FIRMATA_SERIAL_FEATURE
        serialFeature.handleCapability(pin);
#endif
        Firmata.write(127);
      }
      Firmata.write(END_SYSEX);
      break;
    case PIN_STATE_QUERY:
      if (argc > 0) {
        byte pin = argv[0];
        Firmata.write(START_SYSEX);
        Firmata.write(PIN_STATE_RESPONSE);
        Firmata.write(pin);
        if (pin < TOTAL_PINS) {
          Firmata.write(Firmata.getPinMode(pin));
          Firmata.write((byte)Firmata.getPinState(pin) & 0x7F);
          if (Firmata.getPinState(pin) & 0xFF80) Firmata.write((byte)(Firmata.getPinState(pin) >> 7) & 0x7F);
          if (Firmata.getPinState(pin) & 0xC000) Firmata.write((byte)(Firmata.getPinState(pin) >> 14) & 0x7F);
        }
        Firmata.write(END_SYSEX);
      }
      break;
    case ANALOG_MAPPING_QUERY:
      Firmata.write(START_SYSEX);
      Firmata.write(ANALOG_MAPPING_RESPONSE);
      for (byte pin = 0; pin < TOTAL_PINS; pin++) {
        Firmata.write(IS_PIN_ANALOG(pin) ? PIN_TO_ANALOG(pin) : 127);
      }
      Firmata.write(END_SYSEX);
      break;

    case SERIAL_MESSAGE:
#ifdef FIRMATA_SERIAL_FEATURE
      serialFeature.handleSysex(command, argc, argv);
#endif
      break;
  }
}

/*==============================================================================
 * SETUP()
 *============================================================================*/

void systemResetCallback()
{
  isResetting = true;

  // initialize a defalt state
  // TODO: option to load config from EEPROM instead of default

#ifdef FIRMATA_SERIAL_FEATURE
  serialFeature.reset();
#endif

  if (isI2CEnabled) {
    disableI2CPins();
  }

  for (byte i = 0; i < TOTAL_PORTS; i++) {
    reportPINs[i] = false;    // by default, reporting off
    portConfigInputs[i] = 0;  // until activated
    previousPINs[i] = 0;
  }

  for (byte i = 0; i < TOTAL_PINS; i++) {
    // pins with analog capability default to analog input
    // otherwise, pins default to digital output
    if (IS_PIN_ANALOG(i)) {
      // turns off pullup, configures everything
      setPinModeCallback(i, PIN_MODE_ANALOG);
    } else if (IS_PIN_DIGITAL(i)) {
      // sets the output to 0, configures portConfigInputs
      setPinModeCallback(i, OUTPUT);
    }

    servoPinMap[i] = 255;
  }
  // by default, do not report any analog inputs
  analogInputsToReport = 0;

  detachedServoCount = 0;
  servoCount = 0;

  /* send digital inputs to set the initial state on the host computer,
   * since once in the loop(), this firmware will only send on change */
  /*
  TODO: this can never execute, since no pins default to digital input
        but it will be needed when/if we support EEPROM stored config
  for (byte i=0; i < TOTAL_PORTS; i++) {
    outputPort(i, readPort(i, portConfigInputs[i]), true);
  }
  */
  isResetting = false;
}

void setup()
{
  Firmata.setFirmwareVersion(FIRMATA_FIRMWARE_MAJOR_VERSION, FIRMATA_FIRMWARE_MINOR_VERSION);

  Firmata.attach(ANALOG_MESSAGE, analogWriteCallback);
  Firmata.attach(DIGITAL_MESSAGE, digitalWriteCallback);
  Firmata.attach(REPORT_ANALOG, reportAnalogCallback);
  Firmata.attach(REPORT_DIGITAL, reportDigitalCallback);
  Firmata.attach(SET_PIN_MODE, setPinModeCallback);
  Firmata.attach(SET_DIGITAL_PIN_VALUE, setPinValueCallback);
  Firmata.attach(START_SYSEX, sysexCallback);
  Firmata.attach(SYSTEM_RESET, systemResetCallback);

  // to use a port other than Serial, such as Serial1 on an Arduino Leonardo or Mega,
  // Call begin(baud) on the alternate serial port and pass it to Firmata to begin like this:
  // Serial1.begin(57600);
  // Firmata.begin(Serial1);
  // However do not do this if you are using SERIAL_MESSAGE

  Serial1.begin(57600);
  Firmata.begin(Serial1);
  while (!Serial1) {
    ; // wait for serial port to connect. Needed for ATmega32u4-based boards and Arduino 101
  }

  systemResetCallback();  // reset to default config
}

/*==============================================================================
 * LOOP()
 *============================================================================*/
void loop()
{
  byte pin, analogPin;

  /* DIGITALREAD - as fast as possible, check for changes and output them to the
   * FTDI buffer using Serial.print()  */
  checkDigitalInputs();

  /* STREAMREAD - processing incoming messagse as soon as possible, while still
   * checking digital inputs.  */
  while (Firmata.available())
    Firmata.processInput();

  // TODO - ensure that Stream buffer doesn't go over 60 bytes

  currentMillis = millis();
  if (currentMillis - previousMillis > samplingInterval) {
    previousMillis += samplingInterval;
    /* ANALOGREAD - do all analogReads() at the configured sampling interval */
    for (pin = 0; pin < TOTAL_PINS; pin++) {
      if (IS_PIN_ANALOG(pin) && Firmata.getPinMode(pin) == PIN_MODE_ANALOG) {
        analogPin = PIN_TO_ANALOG(pin);
        if (analogInputsToReport & (1 << analogPin)) {
          Firmata.sendAnalog(analogPin, analogRead(analogPin));
        }
      }
    }
    // report i2c data for all device with read continuous mode enabled
    if (queryIndex > -1) {
      for (byte i = 0; i < queryIndex + 1; i++) {
        readAndReportData(query[i].addr, query[i].reg, query[i].bytes, query[i].stopTX);
      }
    }
  }

#ifdef FIRMATA_SERIAL_FEATURE
  serialFeature.update();
#endif
}

Credits

MetaView

MetaView

8 projects • 15 followers

Comments